• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments

    Author(s)
    Desjonqueres, Camille
    Gifford, Toby
    Linke, Simon
    Griffith University Author(s)
    Linke, Simon
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    1. Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Although these techniques produce valuable data, they are invasive, time-consuming and typically permit only limited spatial and temporal replication. There is need for the development of complementary methods. 2. As observed in other ecosystems, freshwater environments host animals that emit sounds, either to communicate or as a ...
    View more >
    1. Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Although these techniques produce valuable data, they are invasive, time-consuming and typically permit only limited spatial and temporal replication. There is need for the development of complementary methods. 2. As observed in other ecosystems, freshwater environments host animals that emit sounds, either to communicate or as a by-product of their activity. The main freshwater soniferous groups are amphibians, fish, and macroinvertebrates (mainly Coleoptera and Hemiptera, but also some Decapoda, Odonata, and Trichoptera). Biophysical processes such as flow or sediment transport also produce sounds, as well as human activities within aquatic ecosystems. 3. Such animals and processes can be recorded, remotely and autonomously, and provide information on local diversity and ecosystem health. Passive acoustic monitoring (PAM) is an emerging method already deployed in terrestrial environments that uses sounds to survey environments. Key advantages of PAM are its non-invasive nature, as well as its ability to record autonomously and over long timescales. All these research topics are the main aims of ecoacoustics, a new scientific discipline investigating the ecological role of sounds. 4. In this paper, we review the sources of sounds present in freshwater environments. We then underline areas of research in which PAM may be helpful emphasising the role of PAM for the development of ecoacoustics. Finally, we present methods used to record and analyse sounds in those environments. 5. Passive acoustics represents a potentially revolutionary development in freshwater ecology, enabling continuous monitoring of dynamic bio-physical processes to inform conservation practitioners and managers.
    View less >
    Journal Title
    Freshwater Biology
    Volume
    65
    Issue
    1
    DOI
    https://doi.org/10.1111/fwb.13356
    Subject
    Ecological applications
    Environmental sciences
    Biological sciences
    Science & Technology
    Life Sciences & Biomedicine
    Ecology
    Marine & Freshwater Biology
    Environmental Sciences & Ecology
    Publication URI
    http://hdl.handle.net/10072/394596
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander