Show simple item record

dc.contributor.authorDesjonqueres, Camille
dc.contributor.authorGifford, Toby
dc.contributor.authorLinke, Simon
dc.date.accessioned2020-06-14T22:45:45Z
dc.date.available2020-06-14T22:45:45Z
dc.date.issued2019
dc.identifier.issn0046-5070
dc.identifier.doi10.1111/fwb.13356
dc.identifier.urihttp://hdl.handle.net/10072/394596
dc.description.abstract1. Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Although these techniques produce valuable data, they are invasive, time-consuming and typically permit only limited spatial and temporal replication. There is need for the development of complementary methods. 2. As observed in other ecosystems, freshwater environments host animals that emit sounds, either to communicate or as a by-product of their activity. The main freshwater soniferous groups are amphibians, fish, and macroinvertebrates (mainly Coleoptera and Hemiptera, but also some Decapoda, Odonata, and Trichoptera). Biophysical processes such as flow or sediment transport also produce sounds, as well as human activities within aquatic ecosystems. 3. Such animals and processes can be recorded, remotely and autonomously, and provide information on local diversity and ecosystem health. Passive acoustic monitoring (PAM) is an emerging method already deployed in terrestrial environments that uses sounds to survey environments. Key advantages of PAM are its non-invasive nature, as well as its ability to record autonomously and over long timescales. All these research topics are the main aims of ecoacoustics, a new scientific discipline investigating the ecological role of sounds. 4. In this paper, we review the sources of sounds present in freshwater environments. We then underline areas of research in which PAM may be helpful emphasising the role of PAM for the development of ecoacoustics. Finally, we present methods used to record and analyse sounds in those environments. 5. Passive acoustics represents a potentially revolutionary development in freshwater ecology, enabling continuous monitoring of dynamic bio-physical processes to inform conservation practitioners and managers.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofissue1
dc.relation.ispartofjournalFreshwater Biology
dc.relation.ispartofvolume65
dc.subject.fieldofresearchEcological Applications
dc.subject.fieldofresearchEnvironmental Sciences
dc.subject.fieldofresearchBiological Sciences
dc.subject.fieldofresearchcode0501
dc.subject.fieldofresearchcode05
dc.subject.fieldofresearchcode06
dc.subject.keywordsScience & Technology
dc.subject.keywordsLife Sciences & Biomedicine
dc.subject.keywordsEcology
dc.subject.keywordsMarine & Freshwater Biology
dc.subject.keywordsEnvironmental Sciences & Ecology
dc.titlePassive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationDesjonqueres, C; Gifford, T; Linke, S, Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments, Freshwater Biology, 2019, 65 (1)
dc.date.updated2020-06-14T22:33:16Z
gro.hasfulltextNo Full Text
gro.griffith.authorLinke, Simon


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record