• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Features Observed Using Multiple Inertial Sensors for Running Track and Hard-Soft Sand Running: A Comparison Study

    Thumbnail
    View/Open
    Espinosa431086Published.pdf (544.6Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Worsey, Matthew TO
    Espinosa, Hugo G
    Shepherd, Jonathan B
    Lewerenz, Julian
    Klodzinski, Florian SM
    Thiel, David V
    Griffith University Author(s)
    Espinosa, Hugo G.
    Worsey, Matthew T.
    Thiel, David V.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Variability in the running surface can cause an athlete to alter their gait. Most literature report running on grass, a treadmill or athletics running tracks using inertial sensors. This study compares the signals obtained by 9 degrees of freedom (DOF) inertial-magnetic sensors incorporating an accelerometer (±16 g), gyroscope (±2000°/s) and magnetometer (±8 gauss). The sensors were placed on the participant’s shank, knee, lower spine and upper spine, and the participants were asked to run on three different surfaces (running track, hard sand and soft sand). The calculated player loads for a 400 m run on each surface type ...
    View more >
    Variability in the running surface can cause an athlete to alter their gait. Most literature report running on grass, a treadmill or athletics running tracks using inertial sensors. This study compares the signals obtained by 9 degrees of freedom (DOF) inertial-magnetic sensors incorporating an accelerometer (±16 g), gyroscope (±2000°/s) and magnetometer (±8 gauss). The sensors were placed on the participant’s shank, knee, lower spine and upper spine, and the participants were asked to run on three different surfaces (running track, hard sand and soft sand). The calculated player loads for a 400 m run on each surface type was very similar. The mean and standard deviation values were 577 ± 130, 581 ± 128, 568 ± 124 for soft sand, hard sand and the running track, respectively. This did not correlate with the participant’s self-assessment RPE (Rate of perceived exertion), which demonstrated running on soft sand to be significantly more challenging, yielding a mean and standard deviation of 5.3 ± 2.5 (Hard to Very Hard). Soft sand running had a decreased swing time duration but increased variability (0.44 ± 0.02 s—Swing Time, 6.5 ± 1.1%—CV), hard sand running had the longest swing and intermediate variability duration (0.46 ± 0.02 s—Swing Time, 3.30 ± 2.58 %—CV) and running track running had the medium swing time but lowest variability (0.45 ± 0.02 s, 2.7 ± 0.9%—CV). Gait dominance was not consistent across the surfaces for each participant and remained below a ratio of 0.4. These results provide an insight into how athletes modify their gait mechanics to accommodate different running surfaces.
    View less >
    Journal Title
    Proceedings
    Conference Title
    Proceedings
    Volume
    49
    Issue
    1
    DOI
    https://doi.org/10.3390/proceedings2020049012
    Copyright Statement
    © 2020 The Authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    Subject
    Engineering practice and education not elsewhere classified
    Sports science and exercise
    Publication URI
    http://hdl.handle.net/10072/394690
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander