π-Corrected Heisenberg Limit

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Gorecki, Wojciech
Demkowicz-Dobrzanski, Rafal
Wiseman, Howard M
Berry, Dominic W
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
We consider the precision Δφ with which the parameter φ, appearing in the unitary map Uφ=eiφΛ, acting on some type of probe system, can be estimated when there is a finite amount of prior information about φ. We show that, if Uφ acts n times in total, then, asymptotically in n, there is a tight lower bound Δφ≥π/[n(λ+-λ-)], where λ+, λ- are the extreme eigenvalues of the generator Λ. This is greater by a factor of π than the conventional Heisenberg limit, derived from the properties of the quantum Fisher information. That is, the conventional bound is never saturable. Our result makes no assumptions on the measurement protocol ...
View more >We consider the precision Δφ with which the parameter φ, appearing in the unitary map Uφ=eiφΛ, acting on some type of probe system, can be estimated when there is a finite amount of prior information about φ. We show that, if Uφ acts n times in total, then, asymptotically in n, there is a tight lower bound Δφ≥π/[n(λ+-λ-)], where λ+, λ- are the extreme eigenvalues of the generator Λ. This is greater by a factor of π than the conventional Heisenberg limit, derived from the properties of the quantum Fisher information. That is, the conventional bound is never saturable. Our result makes no assumptions on the measurement protocol and is relevant not only in the noiseless case but also if noise can be eliminated using quantum error correction techniques.
View less >
View more >We consider the precision Δφ with which the parameter φ, appearing in the unitary map Uφ=eiφΛ, acting on some type of probe system, can be estimated when there is a finite amount of prior information about φ. We show that, if Uφ acts n times in total, then, asymptotically in n, there is a tight lower bound Δφ≥π/[n(λ+-λ-)], where λ+, λ- are the extreme eigenvalues of the generator Λ. This is greater by a factor of π than the conventional Heisenberg limit, derived from the properties of the quantum Fisher information. That is, the conventional bound is never saturable. Our result makes no assumptions on the measurement protocol and is relevant not only in the noiseless case but also if noise can be eliminated using quantum error correction techniques.
View less >
Journal Title
Physical Review Letters
Volume
124
Issue
3
Copyright Statement
© 2020 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Engineering
Science & Technology
Physics, Multidisciplinary
Physics