An Enhanced Control System for Single-Phase Inverters Interfaced With Weak and Distorted Grids
Author(s)
Silwal, Sushil
Taghizadeh, Seyedfoad
Karimi-Ghartemani, Masoud
Hossain, M Jahangir
Davari, Masoud
Year published
2019
Metadata
Show full item recordAbstract
This paper presents an enhanced current controller for improving the performance of a class of single-phase grid-connected inverters operating in weak and distorted grid conditions. An inverter designed to operate at normal (strong or stiff and clean) grid conditions may not perform satisfactorily during weak and distorted grid conditions. One major reason is the interfering dynamics of the synchronization or phase-locked loop (PLL). This paper proposes an enhanced control structure for a popular class of single-phase inverters to address this problem. The proposed idea is to include the PLL state variables into the main ...
View more >This paper presents an enhanced current controller for improving the performance of a class of single-phase grid-connected inverters operating in weak and distorted grid conditions. An inverter designed to operate at normal (strong or stiff and clean) grid conditions may not perform satisfactorily during weak and distorted grid conditions. One major reason is the interfering dynamics of the synchronization or phase-locked loop (PLL). This paper proposes an enhanced control structure for a popular class of single-phase inverters to address this problem. The proposed idea is to include the PLL state variables into the main inverter controller thereby minimizing the undesirable interactions of the PLL with the other components. A method for optimally designing the controller gains is also proposed. Compared to the conventional one, the proposed controller is shown to have a more robust performance over a substantially wider range of weak and distorted grid conditions. Extensive simulation and experimental results are presented to validate the proposed controls.
View less >
View more >This paper presents an enhanced current controller for improving the performance of a class of single-phase grid-connected inverters operating in weak and distorted grid conditions. An inverter designed to operate at normal (strong or stiff and clean) grid conditions may not perform satisfactorily during weak and distorted grid conditions. One major reason is the interfering dynamics of the synchronization or phase-locked loop (PLL). This paper proposes an enhanced control structure for a popular class of single-phase inverters to address this problem. The proposed idea is to include the PLL state variables into the main inverter controller thereby minimizing the undesirable interactions of the PLL with the other components. A method for optimally designing the controller gains is also proposed. Compared to the conventional one, the proposed controller is shown to have a more robust performance over a substantially wider range of weak and distorted grid conditions. Extensive simulation and experimental results are presented to validate the proposed controls.
View less >
Journal Title
IEEE Transactions on Power Electronics
Volume
34
Issue
12
Subject
Electrical engineering
Science & Technology
Technology
Engineering, Electrical & Electronic
Engineering
Distributed generation