Show simple item record

dc.contributor.authorGu, Tianhang
dc.contributor.authorTeng, Wei
dc.contributor.authorBai, Nan
dc.contributor.authorChen, Zehan
dc.contributor.authorFan, Jianwei
dc.contributor.authorZhang, Wei-xian
dc.contributor.authorZhao, Dongyuan
dc.date.accessioned2020-07-10T05:16:13Z
dc.date.available2020-07-10T05:16:13Z
dc.date.issued2020
dc.identifier.issn2050-7488
dc.identifier.doi10.1039/d0ta01171a
dc.identifier.urihttp://hdl.handle.net/10072/395337
dc.description.abstractBimetals have attracted considerable attention as electrocatalysts towards selective reduction of nitrate to benign dinitrogen. Design of highly efficient and stable bimetallic catalysts by taking the effects of both active sites increasing and synergistic composition into account is of paramount importance but still a grand challenge. Herein we report novel bimetallic Pd–Cu nanoparticles (NPs) incorporated in porous N-doped carbon octahedra prepared by a spatial confinement strategy of in situ pyrolysis of metal–organic frameworks with the assistance of polyvinyl pyrrolidone (PVP) as electrocatalysts achieving targeted denitrification. Pd–Cu NPs exhibit superior dispersity with a N-doped matrix and are strongly dependent on the variation of PVP, Pd precursor and pyrolysis temperature. The material shows high efficiency (∼97.1%) for the reduction of nitrate from 100 to 2.9 mg NO3−-N L−1 (well below drinking water standards of 10 mg NO3−-N L−1), and especially the selectivity over 83% for benign N2 at neutral pH within 24 h. Encapsulated and well-dispersed Pd–Cu NPs and doped N in the carbonaceous matrix synergistically enhance the interfacial electron transfer for transformation of NO3−-N(V). Porous structures endow the catalyst with outstanding stability after eight cycles and over a wide pH of 4–10. More importantly, the nanocatalyst performs well with real contaminated water (selectivity of 91% for nitrogen) in laboratory batch reactors. This nanocatalyst shows promise in wastewater treatment and environmental remediation due to the spatial confinement strategy and introduction of heterogeneous atoms.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.ispartofpagefrom9545
dc.relation.ispartofpageto9553
dc.relation.ispartofissue19
dc.relation.ispartofjournalJournal of Materials Chemistry A
dc.relation.ispartofvolume8
dc.subject.fieldofresearchMacromolecular and Materials Chemistry
dc.subject.fieldofresearchMaterials Engineering
dc.subject.fieldofresearchInterdisciplinary Engineering
dc.subject.fieldofresearchcode0303
dc.subject.fieldofresearchcode0912
dc.subject.fieldofresearchcode0915
dc.titleNano-spatially confined Pd-Cu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationGu, T; Teng, W; Bai, N; Chen, Z; Fan, J; Zhang, WX; Zhao, D, Nano-spatially confined Pd-Cu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification, Journal of Materials Chemistry A, 2020, 8 (19), pp. 9545-9553
dc.date.updated2020-07-10T05:15:02Z
gro.hasfulltextNo Full Text
gro.griffith.authorZhao, Dongyuan


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record