• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Factors Affecting Long-Survival of Patients with Breast Cancer by Non-Mixture and Mixture Cure Models Using the Weibull, Log-logistic and Dagum Distributions: A Bayesian Approach

    Thumbnail
    View/Open
    Bahrampour386698-Published.pdf (323.5Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Rafati, S
    Baneshi, MR
    Bahrampour, A
    Griffith University Author(s)
    Bahrampour, Abbas
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    BACKGROUND: Breast cancer is a top biomedical research priority, and it is a major health problem. Therefore, the present study aimed to determine the prognostic factors of breast cancer survival using cure models. METHODS: In this retrospective cohort analytic study, data of 140 breast cancer patients were collected from Ali Ibn Abi Taleb hospital, Rafsanjan, Southeastern Iran. Since in this study, a part of the population had long-term survival, cure models were used and evaluated using DIC index. The data were analyzed using Openbugs Software. RESULTS: In this study, of 140 breast cancer patients, 23 (16.4%) cases died ...
    View more >
    BACKGROUND: Breast cancer is a top biomedical research priority, and it is a major health problem. Therefore, the present study aimed to determine the prognostic factors of breast cancer survival using cure models. METHODS: In this retrospective cohort analytic study, data of 140 breast cancer patients were collected from Ali Ibn Abi Taleb hospital, Rafsanjan, Southeastern Iran. Since in this study, a part of the population had long-term survival, cure models were used and evaluated using DIC index. The data were analyzed using Openbugs Software. RESULTS: In this study, of 140 breast cancer patients, 23 (16.4%) cases died of breast cancer. Based on the findings, the Bayesian nonmixture cure model, with type I Dagum distribution, was the best fitted model. The variables of BMI, number of children, number of natural deliveries, tumor size, metastasis, consumption of canned food, tobacco use, and breastfeeding affected patients' survival based on type I Dagum distribution. CONCLUSION: The results of the present study demonstrated that the Bayesian nonmixture cure model, with type I Dagum distribution, can be a good model to determine factors affecting the survival of patients when there is the possibility of a fraction of cure. In this study, it was found that adapting a healthy lifestyle (eg, avoiding canned foods and smoking) can improve the survival of breast cancer patients.
    View less >
    Journal Title
    Asian Pacific Journal of Cancer Prevention (APJCP)
    Volume
    21
    Issue
    2
    DOI
    https://doi.org/10.31557/APJCP.2020.21.2.485
    Copyright Statement
    © The Author(s) 2020. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal’s website or contact the author(s).
    Subject
    Clinical sciences
    Oncology and carcinogenesis
    Health services and systems
    Public health
    Bayesian
    Cure models
    breast cancer
    survival
    Publication URI
    http://hdl.handle.net/10072/395438
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander