• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Temperature dependence of pattern transitions on water surface in contact with DC microplasmas

    Author(s)
    Chen, Y
    Feng, B
    Zhang, Q
    Wang, R
    Ostrikov, K
    Zhong, X
    Griffith University Author(s)
    Ostrikov, Ken
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The DC-driven atmospheric-pressure microplasma is generated in a helium gas flowing through the metal tube cathode and is brought into contact with the surface of the water with the immersed Pt anode. By adjusting the gas flow, discharge current and gap distance, self-organized patterns are observed and varied sequentially from the homogeneous spot to the ring-like shape, distinct spot shape and the gearwheel shape on the water surface. The electrode temperature is measured and the gas temperature of the plasma discharge is calculated through the numerical fitting of the second positive system of the spectrum of N2 molecules. ...
    View more >
    The DC-driven atmospheric-pressure microplasma is generated in a helium gas flowing through the metal tube cathode and is brought into contact with the surface of the water with the immersed Pt anode. By adjusting the gas flow, discharge current and gap distance, self-organized patterns are observed and varied sequentially from the homogeneous spot to the ring-like shape, distinct spot shape and the gearwheel shape on the water surface. The electrode temperature is measured and the gas temperature of the plasma discharge is calculated through the numerical fitting of the second positive system of the spectrum of N2 molecules. It is shown that the pattern transition is related to the electrode and gas temperatures of the plasma. Moreover, specific discretization features of the patterns are shown to appear at certain gas temperatures.
    View less >
    Journal Title
    Plasma Science and Technology
    Volume
    22
    Issue
    5
    DOI
    https://doi.org/10.1088/2058-6272/ab66e9
    Subject
    Nuclear and plasma physics
    Publication URI
    http://hdl.handle.net/10072/395454
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander