• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced resistance of co-existing toxigenic and non-toxigenic Microcystis aeruginosa to pyrogallol compared with monostrains

    Author(s)
    Gao, Yunni
    Lu, Jing
    Orr, Philip T
    Chuang, Ann
    Franklin, Hannah M
    Burford, Michele A
    Griffith University Author(s)
    Franklin, Hannah M.
    Lu, Jing
    Burford, Michele A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Cyanobacteria species are sensitive to many plant allelochemicals, such as pyrogallol. However, little attention has been paid to the relative effects of these xenobiotics on co-occurring toxigenic and non-toxigenic cyanobacterial strains, despite their co-existence in blooms. Hence, the responses of one toxigenic (TS2) and two non-toxigenic (NS1, NS2) Microcystis aeruginosa strains to pyrogallol were tested under three conditions: mono-culture and co-cultured either directly or separately by dialysis membrane. The study showed that the inhibitory effects of pyrogallol on the growth and photosynthetic yield (Fv/Fm) of either ...
    View more >
    Cyanobacteria species are sensitive to many plant allelochemicals, such as pyrogallol. However, little attention has been paid to the relative effects of these xenobiotics on co-occurring toxigenic and non-toxigenic cyanobacterial strains, despite their co-existence in blooms. Hence, the responses of one toxigenic (TS2) and two non-toxigenic (NS1, NS2) Microcystis aeruginosa strains to pyrogallol were tested under three conditions: mono-culture and co-cultured either directly or separately by dialysis membrane. The study showed that the inhibitory effects of pyrogallol on the growth and photosynthetic yield (Fv/Fm) of either toxigenic or non-toxigenic M. aeruginosa strains were lower in direct and dialysis co-culture conditions than those in mono-culture conditions. This result indicated that chemical-mediated reciprocal effects occur between the co-existing toxigenic and non-toxigenic strains. The toxigenic M. aeruginosa strain was more sensitive to pyrogallol than the non-toxigenic strains in both mono- and co-culture systems, though whether this outcome is due to the former's toxigenic status is unclear. Intracellular microcystin-LR (MC-LR) concentrations of the toxigenic strain decreased after pyrogallol addition in both mono- and co-culture systems, whereas extracellular MC-LR concentrations increased. This finding may reflect the cell damage of M. aeruginosa because of the pyrogallol. At the same initial number of cells, the extracellular MC-LR concentration released from the same amount of TS2 cells in mono-culture was slightly higher than that in dialysis co-culture conditions. Overall, this study shows that plant allelochemicals may have the potential to reduce bloom toxicity by reducing the proportion of toxigenic cyanobacterial strains, and the effects of co-existing strains must be considered when assessing the effects of plant allelochemicals on target strains.
    View less >
    Journal Title
    Toxicon
    Volume
    176
    DOI
    https://doi.org/10.1016/j.toxicon.2020.01.013
    Subject
    Pharmacology and pharmaceutical sciences
    Science & Technology
    Life Sciences & Biomedicine
    Toxicology
    Co-existing strains
    Pharmacy
    Publication URI
    http://hdl.handle.net/10072/395605
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander