• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification

    Thumbnail
    View/Open
    Sanderson437147-Accepted.pdf (2.481Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Ge, ZongYuan
    McCool, Chris
    Sanderson, Conrad
    Wang, Peng
    Liu, Lingqiao
    Reid, Ian
    Corke, Peter
    Griffith University Author(s)
    Sanderson, Conrad
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Fine-grained classification is a relatively new field that has concentrated on using information from a single image, while ignoring the enormous potential of using video data to improve classification. In this work we present the novel task of video-based fine-grained object classification, propose a corresponding new video dataset, and perform a systematic study of several recent deep convolutional neural network (DCNN) based approaches, which we specifically adapt to the task. We evaluate three-dimensional DCNNs, two-stream DCNNs, and bilinear DCNNs. Two forms of the two-stream approach are used, where spatial and temporal ...
    View more >
    Fine-grained classification is a relatively new field that has concentrated on using information from a single image, while ignoring the enormous potential of using video data to improve classification. In this work we present the novel task of video-based fine-grained object classification, propose a corresponding new video dataset, and perform a systematic study of several recent deep convolutional neural network (DCNN) based approaches, which we specifically adapt to the task. We evaluate three-dimensional DCNNs, two-stream DCNNs, and bilinear DCNNs. Two forms of the two-stream approach are used, where spatial and temporal data from two independent DCNNs are fused either via early fusion (combination of the fully-connected layers) and late fusion (concatenation of the softmax outputs of the DCNNs). For bilinear DCNNs, information from the convolutional layers of the spatial and temporal DCNNs is combined via local co-occurrences. We then fuse the bilinear DCNN and early fusion of the two-stream approach to combine the spatial and temporal information at the local and global level (Spatio-Temporal Co-occurrence). Using the new and challenging video dataset of birds, classification performance is improved from 23.1% (using single images) to 41.1% when using the Spatio-Temporal Co-occurrence system. Incorporating automatically detected bounding box location further improves the classification accuracy to 53.6%.
    View less >
    Conference Title
    2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA)
    DOI
    https://doi.org/10.1109/dicta.2016.7797039
    Copyright Statement
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/395907
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander