Show simple item record

dc.contributor.authorGe, ZongYuan
dc.contributor.authorMcCool, Chris
dc.contributor.authorSanderson, Conrad
dc.contributor.authorCorke, Peter
dc.date.accessioned2020-07-30T03:51:47Z
dc.date.available2020-07-30T03:51:47Z
dc.date.issued2015
dc.identifier.issn1613-0073
dc.identifier.urihttp://hdl.handle.net/10072/395919
dc.description.abstractWe present the plant classification system submitted by the QUT RV team to the LifeCLEF 2015 plant task. Our system learns a content specific feature for various plant parts such as branch, leaf, fruit, flower and stem. These features are learned using a deep convolutional neural network. Experiments on the LifeCLEF 2015 plant dataset show that the proposed method achieves good performance with a score of 0.633 on the test set.
dc.description.peerreviewedYes
dc.publisherCEUR Workshop Proceedings
dc.publisher.urihttp://ceur-ws.org/Vol-1391/
dc.relation.ispartofconferencenameCLEF 2015 - Conference and Labs of the Evaluation Forum
dc.relation.ispartofconferencetitleWorking Notes of CLEF 2015 - Conference and Labs of the Evaluation Forum
dc.relation.ispartofdatefrom2015-09-08
dc.relation.ispartofdateto2015-09-11
dc.relation.ispartoflocationToulouse, France
dc.relation.ispartofvolume1391
dc.subject.fieldofresearchArtificial Intelligence and Image Processing
dc.subject.fieldofresearchComputer Vision
dc.subject.fieldofresearchKnowledge Representation and Machine Learning
dc.subject.fieldofresearchcode0801
dc.subject.fieldofresearchcode080104
dc.subject.fieldofresearchcode170203
dc.titleContent Specific Feature Learning for Fine-Grained Plant Classification
dc.typeConference output
dc.type.descriptionE1 - Conferences
dcterms.bibliographicCitationGe, Z; McCool, C; Sanderson, C; Corke, P, Content Specific Feature Learning for Fine-Grained Plant Classification, Working Notes of CLEF 2015 - Conference and Labs of the Evaluation Forum, 2015, 1391
dcterms.licensehttps://creativecommons.org/publicdomain/zero/1.0/
dc.date.updated2020-07-29T05:11:33Z
dc.description.versionPublished
gro.rights.copyright2015. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
gro.hasfulltextFull Text
gro.griffith.authorSanderson, Conrad


Files in this item

This item appears in the following Collection(s)

  • Conference outputs
    Contains papers delivered by Griffith authors at national and international conferences.

Show simple item record