• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences

    Thumbnail
    View/Open
    Sanderson437146Accepted.pdf (1013.Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Harandi, Mehrtash T
    Hartley, Richard
    Lovell, Brian
    Sanderson, Conrad
    Griffith University Author(s)
    Sanderson, Conrad
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    This paper introduces sparse coding and dictionary learning for symmetric positive definite (SPD) matrices, which are often used in machine learning, computer vision, and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper, we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into the Hilbert spaces through two types of the Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding but also an online ...
    View more >
    This paper introduces sparse coding and dictionary learning for symmetric positive definite (SPD) matrices, which are often used in machine learning, computer vision, and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper, we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into the Hilbert spaces through two types of the Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification, and texture categorization.
    View less >
    Journal Title
    IEEE Transactions on Neural Networks and Learning Systems
    Volume
    27
    Issue
    6
    DOI
    https://doi.org/10.1109/tnnls.2014.2387383
    Copyright Statement
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/395934
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander