• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Calcium dynamically alters erythrocyte mechanical response to shear

    Author(s)
    Kuck, L
    Peart, JN
    Simmonds, MJ
    Griffith University Author(s)
    Peart, Jason N.
    Simmonds, Michael J.
    Kuck, Lennart L.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Red blood cells (RBC) are constantly exposed to varying mechanical forces while traversing the cardiovascular system. Upon exposure to mechanical stimuli (e.g., shear stress), calcium enters the cell and prompts potassium-efflux. Efflux of potassium is accompanied by a loss of intracellular fluid; thus, the volume of RBC decreases proportionately (i.e., 'Gárdos effect'). The mechanical properties of the cell are subsequently impacted due to complex interactions between cytosolic viscosity (dependent on cell hydration), the surface-area-to-volume ratio, and other molecular processes. The dynamic effects of calcium on RBC ...
    View more >
    Red blood cells (RBC) are constantly exposed to varying mechanical forces while traversing the cardiovascular system. Upon exposure to mechanical stimuli (e.g., shear stress), calcium enters the cell and prompts potassium-efflux. Efflux of potassium is accompanied by a loss of intracellular fluid; thus, the volume of RBC decreases proportionately (i.e., 'Gárdos effect'). The mechanical properties of the cell are subsequently impacted due to complex interactions between cytosolic viscosity (dependent on cell hydration), the surface-area-to-volume ratio, and other molecular processes. The dynamic effects of calcium on RBC mechanics are yet to be elucidated, although accumulating evidence suggests a vital role. The present study thus examined the effects of calcium on contemporary biomechanical properties of RBC in conjunction with high-precision geometrical analyses with exposure to shear. Mechanical stimulation of RBC was performed using a co-axial Couette shearing system to deform the cell membrane; intracellular signaling events were observed via fluorescent imaging. Calcium was introduced into RBC using ionophore A23187. Increased intracellular calcium significantly impaired RBC deformability; these impairments were mediated by a calcium-induced reduction of cell volume through the Gárdos channel. Extracellular calcium in the absence of the ionophore only had an effect under shear, not at stasis. Under low shear, the presence of extracellular calcium induced progressive lysis of a sub-population of RBC; all remaining RBC exhibited exceptional capacity to deform, implying preferential removal of potentially aged cells. Collectively, we provide evidence of the mechanism by which calcium acutely regulates RBC mechanical properties.
    View less >
    Journal Title
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
    DOI
    https://doi.org/10.1016/j.bbamcr.2020.118802
    Subject
    Biochemistry and cell biology
    Medical microbiology
    Calcium signaling
    Cell deformability
    Mechanobiology
    Mechanotransduction
    Red blood cell
    Publication URI
    http://hdl.handle.net/10072/396065
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander