• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments

    Thumbnail
    View/Open
    Duval418970-Accepted.pdf (854.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Bartz, M
    Duval, M
    Brill, D
    Zander, A
    King, GE
    Rhein, A
    Walk, J
    Stauch, G
    Lehmkuhl, F
    Brückner, H
    Griffith University Author(s)
    Duval, Mathieu
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Coastal alluvial fans (CAF) are important geo-archives due to their sensitivity to both tectonic activity and climatic changes. Thus, they can give key insights for geomorphic and sedimentary processes. In this study we test the potential of K-feldspar post infrared-infrared stimulated luminescence (pIR-IRSL) and quartz electron spin resonance (ESR) methods for dating alluvial fan complexes in arid environments. The existing chronological data from marine terraces that interact with CAF make the Atacama Desert in northern Chile an excellent setting for this research. Samples have been collected from alluvial, marine and ...
    View more >
    Coastal alluvial fans (CAF) are important geo-archives due to their sensitivity to both tectonic activity and climatic changes. Thus, they can give key insights for geomorphic and sedimentary processes. In this study we test the potential of K-feldspar post infrared-infrared stimulated luminescence (pIR-IRSL) and quartz electron spin resonance (ESR) methods for dating alluvial fan complexes in arid environments. The existing chronological data from marine terraces that interact with CAF make the Atacama Desert in northern Chile an excellent setting for this research. Samples have been collected from alluvial, marine and aeolian sediments embedded in the CAF complexes, allowing evaluation of the different signal properties and bleaching characteristics of the pIR-IRSL and ESR signals over Late Pleistocene time scales. pIR-IRSL dose distributions of clast-rich alluvial fan samples are characterised by higher scatter and demonstrate heterogeneous bleaching, while matrix-rich alluvial fan deposits show rather homogeneous poor bleaching in the dose dispersion as indicated by a modern analogue sample. In contrast, marine and aeolian deposits are homogeneously well bleached, supported by a modern littoral sample. Following the quartz multiple centre (MC) ESR dating approach (Al and Ti centres), bleaching of the different centres prior to deposition has been achieved. While the Ti–H centre provides mostly lower doses than the Ti–Li centre, in most cases the Al centre provides the highest dose values. This pattern is consistent with their respective bleaching kinetics and suggests that the Ti centre signals most likely provide the closest estimate to the true burial dose for samples with doses >200 Gy. ESR and pIR-IRSL ages are consistent at 2σ for the marine, aeolian and clast-rich debris-flow deposits, which is in agreement with existing chronological data in this area. It appears that the mode of sediment transport on alluvial fans, either as matrix- or clast-rich flows, plays an important role in sediment bleaching. While clast-rich alluvial fan deposits are likely better bleached, we cannot exclude insufficient bleaching during matrix-rich alluvial fan flows; our dating results suggest that both pIR-IRSL and ESR dating overestimate the true burial age. The combination of pIR-IRSL and MC ESR dating can be considered as a promising tool for deciphering alluvial fan formation over (Late) Pleistocene time scales.
    View less >
    Journal Title
    Quaternary International
    DOI
    https://doi.org/10.1016/j.quaint.2020.03.037
    Copyright Statement
    © 2020 Elsevier Ltd and the International Union for Quaternary Research (INQUA). Published by Elsevier Ltd. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Geology
    Physical geography and environmental geoscience
    Archaeology
    Publication URI
    http://hdl.handle.net/10072/396308
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander