Show simple item record

dc.contributor.authorRafati, Shideh
dc.contributor.authorBaneshi, Mohammad Reza
dc.contributor.authorHassani, Laleh
dc.contributor.authorBahrampour, Abbas
dc.date.accessioned2020-08-07T04:56:05Z
dc.date.available2020-08-07T04:56:05Z
dc.date.issued2019
dc.identifier.issn2228-7795
dc.identifier.urihttp://hdl.handle.net/10072/396336
dc.description.abstractBackground: Dialysis is a dominant therapeutic method in patients with chronic renal failure. The ratio of those who experienced the event to the predictor variables is expressed as event per variable (EPV). When EPV is low, one of the common techniques which may help to manage the problem is penalized Cox regression model (PCRM). The aim of this study was to determine the survival of dialysis patients using the PCRM in low-dimensional data with few events. Study design: A cross-sectional study. Methods: Information of 252 dialysis patients of Bandar Abbas hospitals, southern Iran, from 2010-16 were used. To deal with few mortality cases in the sample, the PCRM (lasso, ridge and elastic net, adaptive lasso) were applied. Models were compared in terms of calibration and discrimination. Results: Thirty-five (13.9%) mortality cases were observed. Dialysis data simulations revealed that the lasso had higher prediction accuracy than other models. For one unit of increase in the level of education, the risk of mortality was reduced by 0.32 (HR=0.68). The risk of mortality was 0.26 (HR=1.26) higher for the unemployed than the employed cases. Other significant factors were the duration of each dialysis session, number of dialysis sessions per week and age of dialysis onset (HR=0.93, 0.95 and 1.33). Conclusion: The performance of penalized models, especially the lasso, was satisfying in low-dimensional data with low EPV based on dialysis data simulation and real data, therefore these models are the good choice for managing of this type of data.
dc.languageEnglish
dc.language.isoeng
dc.publisherHamadan University of Medical Sciences
dc.relation.ispartofpagefrom5 pages
dc.relation.ispartofpageto5 pages
dc.relation.ispartofissue3
dc.relation.ispartofjournalJournal of Research in Health Sciences
dc.relation.ispartofvolume19
dc.subject.keywordsScience & Technology
dc.subject.keywordsLife Sciences & Biomedicine
dc.subject.keywordsPublic, Environmental & Occupational Health
dc.subject.keywordsChronic renal failure
dc.subject.keywordsDialysis
dc.titleComparison of Penalized Cox Regression Methods in Low-Dimensional Data with Few-Events: An Application to Dialysis Patients' Data
dc.typeJournal article
dcterms.bibliographicCitationRafati, S; Baneshi, MR; Hassani, L; Bahrampour, A, Comparison of Penalized Cox Regression Methods in Low-Dimensional Data with Few-Events: An Application to Dialysis Patients' Data, Journal of Research in Health Sciences, 2019, 19 (3)
dcterms.dateAccepted2019-07-08
dcterms.licensehttp://creativecommons.org/licenses/by/4.0
dc.date.updated2020-08-07T04:53:26Z
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© 2019 The Author(s); Published by Hamadan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorBahrampour, Abbas


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record