• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Urate and Homocysteine: Predicting Motor and Cognitive Changes in Newly Diagnosed Parkinson's Disease

    Thumbnail
    View/Open
    Khoo230775Published.pdf (193.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Sleeman, Isobel
    Lawson, Rachael A
    Yarnall, Alison J
    Duncan, Gordon W
    Johnston, Fionnuala
    Khoo, Tien K
    Burn, David J
    Griffith University Author(s)
    Khoo, Tien Kheng
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Background: Urate and homocysteine are potential biomarkers for disease progression in Parkinson's disease (PD). Baseline serum urate concentration has been shown to predict motor but not cognitive decline. The relationship between serum homocysteine concentration and cognitive and motor impairment is unknown. Objectives: The aim of this study was to examine the association between baseline serum urate and homocysteine, and prospective measures of disease progression and cognition over 54 months in early PD. Methods: 154 newly diagnosed PD participants and 99 age-matched controls completed a schedule of assessments at ...
    View more >
    Background: Urate and homocysteine are potential biomarkers for disease progression in Parkinson's disease (PD). Baseline serum urate concentration has been shown to predict motor but not cognitive decline. The relationship between serum homocysteine concentration and cognitive and motor impairment is unknown. Objectives: The aim of this study was to examine the association between baseline serum urate and homocysteine, and prospective measures of disease progression and cognition over 54 months in early PD. Methods: 154 newly diagnosed PD participants and 99 age-matched controls completed a schedule of assessments at baseline, 18, 36 and 54 months. The Movement Disorders Society Unified Parkinson's Disease Scale Part III (MDS-UPDRS III) was used to assess motor severity. The Montreal Cognitive Assessment (MoCA) was used to assess global cognition. Serum samples drawn at baseline were analysed for urate, homocysteine, red cell folate and vitamin B12 concentrations. Results: Baseline urate was 331.4±83.8 and 302.7±78.0μmol/L for control and PD participants, respectively (p=0.015). Baseline homocysteine was 9.6±3.3 and 11.1±3.8μmol/L for controls and PD participants, respectively (p<0.01). Linear mixed effects modelling showed that lower baseline urate (β=0.02, p<0.001) and higher homocysteine (β=0.29, p<0.05) predicted decline in motor function. Only higher homocysteine concentrations at baseline, however, predicted declining MoCA scores over 54 months (β=0.11, p<0.01). Conclusions: Lower serum urate concentration is associated with worsening motor function; while higher homocysteine concentration is associated with change in motor function and cognitive decline. Therefore, urate and homocysteine may be suitable biomarkers for predicting motor and cognitive decline in early PD.
    View less >
    Journal Title
    Journal of Parkinson's Disease
    Volume
    9
    Issue
    2
    DOI
    https://doi.org/10.3233/JPD-181535
    Copyright Statement
    © 2019 – IOS Press and the authors. All rights reserved. This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Biochemistry and cell biology
    Neurosciences
    Science & Technology
    Life Sciences & Biomedicine
    Neurosciences & Neurology
    Parkinson's disease
    Publication URI
    http://hdl.handle.net/10072/396416
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander