• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Unprecedented long-distance transport of macroscopic charcoal from a large, intense forest fire in eastern Australia: Implications for fire history reconstruction

    Author(s)
    Woodward, C
    Haines, HA
    Griffith University Author(s)
    Haines, Heather
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Macroscopic charcoal records from wetland sediment cores are used to reconstruct long-term records of fire frequency. A central premise for the use of this tool is that macroscopic charcoal (>125 μm) represents local fires involving local vegetation. Several records reveal that there may often be exceptions to these guidelines. Previous studies have shown that particles larger than 1 cm long can travel at least 20 km from the location of a fire. We present observations of unprecedented long-distance transport of large (⩽5 cm long) charcoal particles at least 50 km from a fire west of Sydney, Australia. Factors that contribute ...
    View more >
    Macroscopic charcoal records from wetland sediment cores are used to reconstruct long-term records of fire frequency. A central premise for the use of this tool is that macroscopic charcoal (>125 μm) represents local fires involving local vegetation. Several records reveal that there may often be exceptions to these guidelines. Previous studies have shown that particles larger than 1 cm long can travel at least 20 km from the location of a fire. We present observations of unprecedented long-distance transport of large (⩽5 cm long) charcoal particles at least 50 km from a fire west of Sydney, Australia. Factors that contribute to long-distance transport of large charcoal particles are fire intensity, upper level wind speed and landscape topography. The fires west of Sydney were large and intense, upper level (~10 km) winds exceeded 90 km h-1, and the topography east of the fire was flat or undulating. Smoke plumes from intense fires like this can reach an altitude of at least 15 km. Charcoal morphology also contributed to long-distance transport in this case. Eucalyptus trees can produce large quantities of aerodynamically efficient particles; from paper thin, smooth, decorticating bark and large sclerophyllous leaves. The presence of large macroscopic charcoal particles in wetland sediments does not automatically indicate local fires and could result from distant, large, intense fires. Large, intense fires can occur in Australia, the grasslands of Kazakhstan, Namibia, the Sahel and Patagonia. High intensity fires also occur in the forested areas of the western United States and Boreal North America. Fires in these regions could result in long-distance transport of large macroscopic charcoal particles under the right circumstances. Local charcoal flux studies are therefore critical for the interpretation of macroscopic charcoal records. We cannot rely on information from areas with different fire regimes, fire intensities or vegetation types.
    View less >
    Journal Title
    Holocene
    Volume
    30
    Issue
    7
    DOI
    https://doi.org/10.1177/0959683620908664
    Subject
    Geology
    Physical geography and environmental geoscience
    Archaeology
    Publication URI
    http://hdl.handle.net/10072/396509
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander