• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Real gas model for an electric swashplate refrigeration compressor

    Thumbnail
    View/Open
    Embargoed until: 2022-05-30
    File version
    Accepted Manuscript (AM)
    Author(s)
    Arqam, M
    Dao, DV
    Jahangiri, A
    Mitchell, M
    Woodfield, P
    Griffith University Author(s)
    Woodfield, Peter L.
    Dao, Dzung V.
    Arqam, Mohammad
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    A real-gas, restricted-flow valve model is compared with an ideal-gas, ideal-valve model for a 10-cylinder swashplate refrigeration compressor. Real gas properties of R134a are evaluated using the NIST standard reference database. A minor-loss discharge-coefficient approach is used to model the refrigerant flow rate through reed valves while the ideal-valve model requires no pressure difference to open the valve. In contrast with the ideal model, the discharge temperature, refrigerant mass flow rate and volumetric efficiency as a function of rotational speed are predicted well by including real-gas properties and flow ...
    View more >
    A real-gas, restricted-flow valve model is compared with an ideal-gas, ideal-valve model for a 10-cylinder swashplate refrigeration compressor. Real gas properties of R134a are evaluated using the NIST standard reference database. A minor-loss discharge-coefficient approach is used to model the refrigerant flow rate through reed valves while the ideal-valve model requires no pressure difference to open the valve. In contrast with the ideal model, the discharge temperature, refrigerant mass flow rate and volumetric efficiency as a function of rotational speed are predicted well by including real-gas properties and flow restriction on the inlet valve. The ideal-gas model significantly overpredicts the discharge temperature and shows no dependence on rpm. Heat transfer to and from the cylinder wall during compression and expansion is found to have only a small effect on predictions of compressor performance. The valve model for the suction side has the largest influence on compressor performance predictions as a function of rpm.
    View less >
    Journal Title
    International Journal of Refrigeration
    Volume
    118
    DOI
    https://doi.org/10.1016/j.ijrefrig.2020.05.025
    Copyright Statement
    © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Engineering
    Publication URI
    http://hdl.handle.net/10072/396539
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander