• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Synergistic effects of low-level stress and a Western diet on metabolic homeostasis, mood and myocardial ischemic tolerance

    Thumbnail
    View/Open
    Du Toit439393-Accepted.pdf (1018.Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Du Toit, Eugene F
    Tai, Fiona
    Cox, Amanda
    O'Connor, Dylan
    Griffith, Tia A
    Helman, Tessa
    Wendt, Lauren
    Peart, Jason N
    Stapelberg, Nicolas JC
    Headrick, John P
    Griffith University Author(s)
    Headrick, John P.
    Du Toit, Eugene
    Peart, Jason N.
    Wendt, Lauren
    Griffith, Tia A.
    Cox, Amanda J.
    O'Connor, Dylan J.
    Helman, Tessa J.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    BACKGROUND: How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies, however findings are contradictory. We test whether low level stress and Western diet (WD) feeding synergistically influence homeostasis, mood and myocardial ischemic tolerance. METHODS: Male C57Bl6/J mice were fed a control or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wks, with subgroups restrained for 30 min/day over the final 3 wks. Metabolism, behavior, tolerance of perfused hearts to ischemia/reperfusion (I/R), and cardiac ...
    View more >
    BACKGROUND: How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies, however findings are contradictory. We test whether low level stress and Western diet (WD) feeding synergistically influence homeostasis, mood and myocardial ischemic tolerance. METHODS: Male C57Bl6/J mice were fed a control or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wks, with subgroups restrained for 30 min/day over the final 3 wks. Metabolism, behavior, tolerance of perfused hearts to ischemia/reperfusion (I/R), and cardiac 'death proteins' were assessed. RESULTS: The WD resulted in insignificant trends to increased body weight (+5%), glucose (+40%), insulin (+40%), triglycerides (+15%) and cholesterol (+20%), and reduced leptin (-20%), while significantly reducing insulin sensitivity (100% rise in HOMA-IR, P<0.05). Restraint did not independently influence metabolism, while increasing HOMA-IR a further 50% (and resulting in significant elevations in insulin and glucose to 60-90% above control) in WD mice (P<0.05), despite blunting weight gain in control and WD mice. Anxiogenesis with restraint or WD was non-additive, whereas anhedonia (reduced sucrose consumption) only arose with their combination. Neuroinflammation markers (hippocampal TNF-a, Il-1b) were unchanged. Myocardial I/R tolerance was unaltered with stress or WD alone, while combination worsened dysfunction and oncosis (LDH efflux). Apoptosis (nucleosome accumulation) and death protein expression (BAK, BAX, BCL-2, RIP-1, TNF-α, cleaved caspase-3 and PARP) were unchanged. CONCLUSION: Mild, anxiogenic yet cardio-metabolically 'benign' stress interacts synergistically with a WD to disrupt homeostasis, promote anhedonia (independently of neuroinflammation), and impair myocardial ischemic tolerance (independently of apoptosis and death protein levels).
    View less >
    Journal Title
    American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology
    DOI
    https://doi.org/10.1152/ajpregu.00322.2019
    Copyright Statement
    © 2020 American Physiological Society . This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Chronic Stress
    Depression
    Diabetes
    Ischemia-Reperfusion
    Myocardium
    Publication URI
    http://hdl.handle.net/10072/396544
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander