• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A comprehensive comparison of cell seeding methods using highly porous melt electrowriting scaffolds

    Thumbnail
    View/Open
    Embargoed until: 2022-07-24
    File version
    Accepted Manuscript (AM)
    Author(s)
    Blaudez, F
    Ivanovski, S
    Ipe, D
    Vaquette, C
    Griffith University Author(s)
    Ivanovski, Saso
    Ipe, Deepak S.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Cell seeding is challenging in the case of additively manufactured 3-dimensional scaffolds, as the open macroscopic pore network impedes the retention of the seeding solution. The present study aimed at comparing several seeding conditions (no fetal bovine serum, 10% or 100% serum) and methods (Static seeding in Tissue Culture Treated plate (CT), Static seeding of the MES in non-Culture Treated plate (nCT), Seeding in nCT plate placed on an orbital shaker at 20 rpm (nCTR), Static seeding of the MES previously incubated with 100% FBS for 1 h to allow for protein adsorption (FBS)) commonly utilised in tissue engineering using ...
    View more >
    Cell seeding is challenging in the case of additively manufactured 3-dimensional scaffolds, as the open macroscopic pore network impedes the retention of the seeding solution. The present study aimed at comparing several seeding conditions (no fetal bovine serum, 10% or 100% serum) and methods (Static seeding in Tissue Culture Treated plate (CT), Static seeding of the MES in non-Culture Treated plate (nCT), Seeding in nCT plate placed on an orbital shaker at 20 rpm (nCTR), Static seeding of the MES previously incubated with 100% FBS for 1 h to allow for protein adsorption (FBS)) commonly utilised in tissue engineering using highly porous melt electrowritten scaffolds, assessing their seeding efficacy, cell distribution homogeneity and reproducibility. Firstly, we demonstrated that the incubation in 100% serum was superior to the 10% serum pre-incubation and that 1 h only was sufficient to obtain enhanced cell attachment. We further compared this technique to the other methods and demonstrated significant and beneficial impact of the 100% serum pre-incubation, which resulted in enhanced efficacy, homogeneous cell distribution and high reproducibility, leading to accelerated colonisation/maturation of the tissue engineered constructs. We further showed the superior performance of this method using 3D-printed scaffolds also made of different polymers, demonstrating its capacity for up-scaling. Therefore, the pre-incubation of the scaffold in 100% serum is a simple yet highly effective method for enhancing cell adhesion and ensuring seeding reproducibility. This is crucial for tissue engineering applications, especially when cell availability is scarce, and for product standardisation from a translational perspective.
    View less >
    Journal Title
    Materials Science and Engineering C
    Volume
    117
    DOI
    https://doi.org/10.1016/j.msec.2020.111282
    Copyright Statement
    © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Biomedical engineering
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/396553
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander