• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of photochemical and microbiological changes in terrestrial dissolved organic matter on its chemical characteristics and phytotoxicity towards cyanobacteria

    Author(s)
    Neilen, Amanda D
    Carroll, Anthony R
    Hawker, Darryl W
    O'Brien, Katherine R
    Burford, Michele A
    Griffith University Author(s)
    Hawker, Darryl W.
    Neilen, Amanda D.
    Carroll, Anthony R.
    Burford, Michele A.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Previous studies have shown that under laboratory conditions, dissolved organic matter (DOM) leached from plants can be differentially more phytotoxic to cyanobacteria, compared to green algae. This study examined how DOM source and transformation processes (microbial and photochemical) affect its chemical composition and phytotoxicity towards a cultured species of cyanobacteria (Raphidiopsis raciborskii) using a factorial experimental design. To complement cyanobacterial bioassays, the chemical composition and associated changes in DOM were determined using spectroscopic (nuclear magnetic resonance (NMR) and absorbance) and ...
    View more >
    Previous studies have shown that under laboratory conditions, dissolved organic matter (DOM) leached from plants can be differentially more phytotoxic to cyanobacteria, compared to green algae. This study examined how DOM source and transformation processes (microbial and photochemical) affect its chemical composition and phytotoxicity towards a cultured species of cyanobacteria (Raphidiopsis raciborskii) using a factorial experimental design. To complement cyanobacterial bioassays, the chemical composition and associated changes in DOM were determined using spectroscopic (nuclear magnetic resonance (NMR) and absorbance) and elemental analyses. Sunlight exposed DOM from leaves of the terrestrial plants, Casuarina cunninghamiana and Eucalyptus tereticornis had the most phytotoxic effect compared to DOM not exposed to sunlight. This phytotoxic DOM was characterised by relatively low nitrogen content, containing highly coloured and relatively high molecular mass constituents. Both mixed effect model and PCA approaches to predict inhibition of photosynthetic yield indicated phytotoxicity could be predicted (P < 0.001) based upon the following parameters: C: N ratio; gilvin, and lignin-derived phenol content of DOM. Parallel proton-detected 1D and 2D NMR techniques showed that glucose anomers were the major constituents of fresh leachate. With ageing, glucose anomers disappeared and products of microbial transformation appeared, but there was no indication of the appearance of additional phytotoxic compounds. This suggests that reactive oxygen species may be responsible, at least partially, for DOM phytotoxicity. This study provides important new information highlighting the characteristics of DOM that link with phytotoxic effects.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    695
    DOI
    https://doi.org/10.1016/j.scitotenv.2019.133901
    Subject
    Environmental sciences
    Science & Technology
    Life Sciences & Biomedicine
    Environmental Sciences & Ecology
    UV-vis spectroscopy
    Publication URI
    http://hdl.handle.net/10072/396639
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander