• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Structural representation learning for network alignment with self-supervised anchor links

    Thumbnail
    View/Open
    Embargoed until: 2022-08-18
    File version
    Accepted Manuscript (AM)
    Author(s)
    Nguyen, Thanh Toan
    Pham, Minh Tam
    Nguyen, Thanh Tam
    Huynh, Thanh Trung
    Tong, Van Vinh
    Hung Nguyen, Quoc Viet
    Quan, Thanh Tho
    Griffith University Author(s)
    Nguyen, Henry
    Nguyen, Thanh Tam
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Network alignment, the problem of identifying similar nodes across networks, is an emerging research topic due to its ubiquitous applications in many data domains such as social-network reconciliation and protein-network analysis. While traditional alignment methods struggle to scale to large graphs, the state-of-the-art representation-based methods often rely on pre-defined anchor links, which are unavailable or expensive to compute in many applications. In this paper, we propose NAWAL, a novel, end-to-end unsupervised embedding-based network alignment framework emphasizing on structural information. The model first embeds ...
    View more >
    Network alignment, the problem of identifying similar nodes across networks, is an emerging research topic due to its ubiquitous applications in many data domains such as social-network reconciliation and protein-network analysis. While traditional alignment methods struggle to scale to large graphs, the state-of-the-art representation-based methods often rely on pre-defined anchor links, which are unavailable or expensive to compute in many applications. In this paper, we propose NAWAL, a novel, end-to-end unsupervised embedding-based network alignment framework emphasizing on structural information. The model first embeds network nodes into a low-dimension space where the structural neighborhoodship on original network is captured by the distance on the space. As the space for the input networks are learnt independently, we further leverage a generative adversarial deep neural network to reconcile the spaces without relying on hand-crafted features or domain-specific supervision. The empirical results on three real-world datasets show that NAWAL significantly outperforms state-of-the-art baselines, by over 13% of accuracy against unsupervised methods and on par or better than supervised methods. Our technique also demonstrate the robustness against adversarial conditions, such as structural noises and graph size imbalance.
    View less >
    Journal Title
    Expert Systems with Applications
    DOI
    https://doi.org/10.1016/j.eswa.2020.113857
    Copyright Statement
    © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Mathematical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/396731
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander