• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbations

    Thumbnail
    View/Open
    Hides426669-Published.pdf (1.940Mb)
    File version
    Version of Record (VoR)
    Author(s)
    De Martino, Enrico
    Salomoni, Sauro E
    Winnard, Andrew
    McCarty, Kristofor
    Lindsay, Kirsty
    Riazati, Sherveen
    Weber, Tobias
    Scott, Jonathan
    Green, David A
    Hides, Julie
    Debuse, Dorothee
    Hodges, Paul W
    van Dieen, Jaap H
    Caplan, Nick
    Griffith University Author(s)
    Hides, Julie A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction ...
    View more >
    Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated with motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected by intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus, and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency-response functions. Compared with 0.75 g, 0.25 g resulted in lower activation of the longissimus thoracis (P = 0.002); lower responses of the superficial multifidus at low frequencies (P = 0.043); lower responses of the superficial multifidus (P = 0.029) and iliocostalis lumborum (P = 0.043); lower trunk admittance (P = 0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (P = 0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of deep abdominal muscle activity.NEW & NOTEWORTHY This study presents for the first time novel insights into the adaptations to hypogravity of spinal curvatures, trunk stiffness, and paraspinal muscle activity. We showed that exposure to hypogravity reduces the displacement of the trunk by an applied perturbation, partially compensated by weaker stabilizing contributions of the paraspinal muscles and concomitant increase in abdominal muscle responses. These findings may have relevance for future recommendations for planetary surface explorations.
    View less >
    Journal Title
    Journal of Applied Physiology
    Volume
    128
    Issue
    4
    DOI
    https://doi.org/10.1152/japplphysiol.00756.2019
    Copyright Statement
    © the American Physiological Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Science & Technology
    Life Sciences & Biomedicine
    Physiology
    Sport Sciences
    intramuscular electromyography
    Publication URI
    http://hdl.handle.net/10072/396742
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander