Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbations

View/ Open
File version
Version of Record (VoR)
Author(s)
De Martino, Enrico
Salomoni, Sauro E
Winnard, Andrew
McCarty, Kristofor
Lindsay, Kirsty
Riazati, Sherveen
Weber, Tobias
Scott, Jonathan
Green, David A
Hides, Julie
Debuse, Dorothee
Hodges, Paul W
van Dieen, Jaap H
Caplan, Nick
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction ...
View more >Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated with motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected by intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus, and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency-response functions. Compared with 0.75 g, 0.25 g resulted in lower activation of the longissimus thoracis (P = 0.002); lower responses of the superficial multifidus at low frequencies (P = 0.043); lower responses of the superficial multifidus (P = 0.029) and iliocostalis lumborum (P = 0.043); lower trunk admittance (P = 0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (P = 0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of deep abdominal muscle activity.NEW & NOTEWORTHY This study presents for the first time novel insights into the adaptations to hypogravity of spinal curvatures, trunk stiffness, and paraspinal muscle activity. We showed that exposure to hypogravity reduces the displacement of the trunk by an applied perturbation, partially compensated by weaker stabilizing contributions of the paraspinal muscles and concomitant increase in abdominal muscle responses. These findings may have relevance for future recommendations for planetary surface explorations.
View less >
View more >Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated with motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected by intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus, and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency-response functions. Compared with 0.75 g, 0.25 g resulted in lower activation of the longissimus thoracis (P = 0.002); lower responses of the superficial multifidus at low frequencies (P = 0.043); lower responses of the superficial multifidus (P = 0.029) and iliocostalis lumborum (P = 0.043); lower trunk admittance (P = 0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (P = 0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of deep abdominal muscle activity.NEW & NOTEWORTHY This study presents for the first time novel insights into the adaptations to hypogravity of spinal curvatures, trunk stiffness, and paraspinal muscle activity. We showed that exposure to hypogravity reduces the displacement of the trunk by an applied perturbation, partially compensated by weaker stabilizing contributions of the paraspinal muscles and concomitant increase in abdominal muscle responses. These findings may have relevance for future recommendations for planetary surface explorations.
View less >
Journal Title
Journal of Applied Physiology
Volume
128
Issue
4
Copyright Statement
© the American Physiological Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Biological sciences
Biomedical and clinical sciences
Science & Technology
Life Sciences & Biomedicine
Physiology
Sport Sciences
intramuscular electromyography