• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries

    Author(s)
    Yang, Jiayi
    Gao, Zhonghui
    Ferber, Thimo
    Zhang, Haifeng
    Guhl, Conrad
    Yang, Liting
    Li, Yuyu
    Deng, Zhi
    Liu, Porun
    Cheng, Chuanwei
    Che, Renchao
    Jaegermann, Wolfram
    Hausbrand, Rene
    Huang, Yunhui
    Griffith University Author(s)
    Liu, Porun
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The sodium (Na) anode suffers severe interfacial resistance and dendrite issues in a classic NASICON-type Na3Zr2Si2PO12 (NZSP) electrolyte, resulting in poor electrochemical performance for solid-state Na metal batteries. There has been little success in the reduction of interfacial resistance in recent years. The exact mechanism of this resistance has not been fully understood because of little information about the interface. In this work, we effectively address the large interfacial resistance issue and the metal dendrite problem between the Na anode and NZSP by introducing a TiO2 film as an active interphase. We employ ...
    View more >
    The sodium (Na) anode suffers severe interfacial resistance and dendrite issues in a classic NASICON-type Na3Zr2Si2PO12 (NZSP) electrolyte, resulting in poor electrochemical performance for solid-state Na metal batteries. There has been little success in the reduction of interfacial resistance in recent years. The exact mechanism of this resistance has not been fully understood because of little information about the interface. In this work, we effectively address the large interfacial resistance issue and the metal dendrite problem between the Na anode and NZSP by introducing a TiO2 film as an active interphase. We employ quasiinsitu X-ray photoelectron spectroscopy (XPS) to uncover the interphase formation mechanism at the Na/TiO2–NZSP electrolyte interface. Our quasiinsitu XPS results confirm the formation of a sodiated-TiO2 interphase upon stepwise Na evaporation on the surface of the NZSP electrolyte. Further investigation by molten Na contact angle measurements, impedance spectroscopy and DFT calculations demonstrates that the sodiated-TiO2 interphase promotes Na ion transport between the Na anode and NZSP electrolyte. Moreover, the electrostatic potential formed at the NZSP/NaxTiO2 interface can effectively reduce electronic conductivity at the interface and hence prevent the growth of sodium dendrites. A representative paradigm for interphase design is provided to address the interface contact for developing stable solid-state batteries with high performance.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    8
    Issue
    16
    DOI
    https://doi.org/10.1039/d0ta01498b
    Subject
    Macromolecular and materials chemistry
    Materials engineering
    Other engineering
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/396771
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander