Valence Alignment of Mixed Ni-Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution
Author(s)
Tsounis, Constantine
Lu, Xunyu
Bedford, Nicholas M
Subhash, Bijil
Thomsen, Lars
Zhang, Qingran
Ma, Zhipeng
Ostrikov, Kostya Ken
Bendavid, Avi
Scott, Jason A
Amal, Rose
Han, Zhaojun
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the ...
View more >Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.
View less >
View more >Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.
View less >
Journal Title
ACS Nano
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Subject
Nanotechnology
Ni Fe hydroxide
angle-dependent NEXAFS
graphene edge
hierarchical 3D structure
metal carbon interaction