• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Incorporation of antimicrobial agents in denture base resin: A systematic review

    Thumbnail
    View/Open
    An440944-Accepted.pdf (475.2Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    An, S
    Evans, JL
    Hamlet, S
    Love, RM
    Griffith University Author(s)
    Evans, Jane L.
    Hamlet, Stephen
    Love, Robert M.
    An, Steve
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Statement of problem: Denture base resins (DBRs), such as polymethyl methacrylate, are commonly used in the fabrication of removable dentures because of their physical, mechanical, and esthetic properties. However, the denture base acts as a substrate for microorganism adherence and biofilm formation, which may lead to denture stomatitis and be further complicated by fungal infections, of especial importance with geriatric and immunosuppressed patients. Therefore, methods to enhance the antimicrobial property of DBRs will be beneficial. Purpose: The purpose of this systematic review was to evaluate the literature on the ...
    View more >
    Statement of problem: Denture base resins (DBRs), such as polymethyl methacrylate, are commonly used in the fabrication of removable dentures because of their physical, mechanical, and esthetic properties. However, the denture base acts as a substrate for microorganism adherence and biofilm formation, which may lead to denture stomatitis and be further complicated by fungal infections, of especial importance with geriatric and immunosuppressed patients. Therefore, methods to enhance the antimicrobial property of DBRs will be beneficial. Purpose: The purpose of this systematic review was to evaluate the literature on the antimicrobial activity of DBRs incorporating antimicrobial agents or materials. Material and methods: A search of English peer-reviewed literature up to February 2019 reporting on antimicrobial activity of DBRs with respect to antimicrobial agents or materials, antimicrobial test effects and methods, and conclusion or knowledge gaps was conducted by using Embase, Google Scholar, PubMed, and Web of Science databases. Search terms included denture base resin and antibacterial, denture base resin and antifungal, and denture base resin and antimicrobial. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were applied for subsequent data analysis. Results: Of 2536 identified articles, 28 met the inclusion criteria for the systematic review. Antimicrobial materials were divided into 3 groups: antimicrobial monomer or copolymer, phytochemical or phytomedical components, and other compounds. Strategies on how to incorporate these substances into DBRs and their impact on the reduction and prevention of the growth of microorganisms were identified. Conclusions: Although many efforts have been made to improve the antimicrobial ability of DBRs, this systematic review found that the effectiveness of incorporating of antimicrobial agents into DBRs has not been demonstrated conclusively.
    View less >
    Journal Title
    The Journal of Prosthetic Dentistry
    DOI
    https://doi.org/10.1016/j.prosdent.2020.03.033
    Copyright Statement
    © 2020 The Editorial Council of The Journal of Prosthetic Dentistry. Published by Elsevier Ltd. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Biomedical engineering
    Dentistry
    Publication URI
    http://hdl.handle.net/10072/396823
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander