• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood

    Author(s)
    Gholami, Mahnaz D
    Sonar, Prashant
    Ayoko, Godwin A
    Izake, Emad L
    Griffith University Author(s)
    Sonar, Prashant
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a critical role in medical conditions such cardiovascular diseases, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s and cancer. Herein, we present a new method for the determination of TNF-α by surface enhanced Raman spectroscopy (SERS). A new benzothiazole azo dye (BAN) was used as a Raman probe to detect the cytokine after its selective extraction from blood plasma using a target-specific antibody-functionalised extractor chip. The disulfide bond structure of the extracted TNF-α was reduced to generate free sulfhydryl (SH), terminal groups that ...
    View more >
    Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a critical role in medical conditions such cardiovascular diseases, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s and cancer. Herein, we present a new method for the determination of TNF-α by surface enhanced Raman spectroscopy (SERS). A new benzothiazole azo dye (BAN) was used as a Raman probe to detect the cytokine after its selective extraction from blood plasma using a target-specific antibody-functionalised extractor chip. The disulfide bond structure of the extracted TNF-α was reduced to generate free sulfhydryl (SH), terminal groups that adsorb preferentially onto a BAN-functionalised SERS substrate and displace the BAN Raman reporter on the substrate surface. This causes the SERS spectrum of BAN to quench proportionally with the cytokine concentration. Using this SERS quenching sensor, TNF-α was quantified down to 1 × 10−14 M (173 pg/L). The quantification of the cytokine by the SERS quenching method was cross-validated against enzyme-linked immunosorbent assay (ELISA) and the percent agreement between the two measurements was found to be 93.39 %. Since many proteins and peptides have disulfide bonds in their molecular structures, the new SERS quenching method can be extended for their ultrasensitive quantification after selective extraction from biological fluids.
    View less >
    Journal Title
    Sensors and Actuators B: Chemical
    Volume
    310
    DOI
    https://doi.org/10.1016/j.snb.2020.127867
    Subject
    Atomic, molecular and optical physics
    Analytical chemistry
    Materials engineering
    Science & Technology
    Physical Sciences
    Electrochemistry
    Publication URI
    http://hdl.handle.net/10072/396900
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander