A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood
Author(s)
Gholami, Mahnaz D
Sonar, Prashant
Ayoko, Godwin A
Izake, Emad L
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a critical role in medical conditions such cardiovascular diseases, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s and cancer. Herein, we present a new method for the determination of TNF-α by surface enhanced Raman spectroscopy (SERS). A new benzothiazole azo dye (BAN) was used as a Raman probe to detect the cytokine after its selective extraction from blood plasma using a target-specific antibody-functionalised extractor chip. The disulfide bond structure of the extracted TNF-α was reduced to generate free sulfhydryl (SH), terminal groups that ...
View more >Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a critical role in medical conditions such cardiovascular diseases, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s and cancer. Herein, we present a new method for the determination of TNF-α by surface enhanced Raman spectroscopy (SERS). A new benzothiazole azo dye (BAN) was used as a Raman probe to detect the cytokine after its selective extraction from blood plasma using a target-specific antibody-functionalised extractor chip. The disulfide bond structure of the extracted TNF-α was reduced to generate free sulfhydryl (SH), terminal groups that adsorb preferentially onto a BAN-functionalised SERS substrate and displace the BAN Raman reporter on the substrate surface. This causes the SERS spectrum of BAN to quench proportionally with the cytokine concentration. Using this SERS quenching sensor, TNF-α was quantified down to 1 × 10−14 M (173 pg/L). The quantification of the cytokine by the SERS quenching method was cross-validated against enzyme-linked immunosorbent assay (ELISA) and the percent agreement between the two measurements was found to be 93.39 %. Since many proteins and peptides have disulfide bonds in their molecular structures, the new SERS quenching method can be extended for their ultrasensitive quantification after selective extraction from biological fluids.
View less >
View more >Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a critical role in medical conditions such cardiovascular diseases, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s and cancer. Herein, we present a new method for the determination of TNF-α by surface enhanced Raman spectroscopy (SERS). A new benzothiazole azo dye (BAN) was used as a Raman probe to detect the cytokine after its selective extraction from blood plasma using a target-specific antibody-functionalised extractor chip. The disulfide bond structure of the extracted TNF-α was reduced to generate free sulfhydryl (SH), terminal groups that adsorb preferentially onto a BAN-functionalised SERS substrate and displace the BAN Raman reporter on the substrate surface. This causes the SERS spectrum of BAN to quench proportionally with the cytokine concentration. Using this SERS quenching sensor, TNF-α was quantified down to 1 × 10−14 M (173 pg/L). The quantification of the cytokine by the SERS quenching method was cross-validated against enzyme-linked immunosorbent assay (ELISA) and the percent agreement between the two measurements was found to be 93.39 %. Since many proteins and peptides have disulfide bonds in their molecular structures, the new SERS quenching method can be extended for their ultrasensitive quantification after selective extraction from biological fluids.
View less >
Journal Title
Sensors and Actuators B: Chemical
Volume
310
Subject
Atomic, molecular and optical physics
Analytical chemistry
Materials engineering
Science & Technology
Physical Sciences
Electrochemistry