• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • 1D/2D C3N4/Graphene Composite as a Preferred Anode Material for Lithium Ion Batteries: Importance of Heterostructure Design via DFT Computation

    Author(s)
    Adekoya, David
    Zhang, Shanqing
    Hankel, Marlies
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Graphene is commonly used to improve the electrochemical performance of electrode materials in rechargeable batteries by forming graphene-based heterostructures. Two-dimensional graphitic carbon nitride (C3N4) is an analogue of graphene, and it is often used to form 1D/2D and 2D/2D C3N4/graphene heterostructures. However, a theoretical understanding of the heterointerface in these heterostructures and how this affects their electrochemical performance is lacking. In this work we study the heterointerface of 1D/2D and 2D/2D C3N4/graphene heterostructures and how the different dimensions influence the lithium ion battery ...
    View more >
    Graphene is commonly used to improve the electrochemical performance of electrode materials in rechargeable batteries by forming graphene-based heterostructures. Two-dimensional graphitic carbon nitride (C3N4) is an analogue of graphene, and it is often used to form 1D/2D and 2D/2D C3N4/graphene heterostructures. However, a theoretical understanding of the heterointerface in these heterostructures and how this affects their electrochemical performance is lacking. In this work we study the heterointerface of 1D/2D and 2D/2D C3N4/graphene heterostructures and how the different dimensions influence the lithium ion battery performance of the heterostructure. Our density functional theory (DFT) study showed that the common problem of C–N bond breakage experienced in 2D/2D C3N4/graphene heterostructure does not occur in the 1D/2D heterostructure. Furthermore, the 1D/2D heterostructure showed superior conductivity in comparison to that of the 2D/2D heterostructure of C3N4/graphene. The 1D/2D C3N4/graphene heterostructure also recorded a high theoretical capacity and rapid charge transfer. These results suggest that the properties of a heterostructure are influenced by the dimension of materials at the interface. These discoveries on the relationship between material dimension in heterostructure electrodes and their electrochemical performance will motivate the design of advanced electrode materials for rechargeable batteries.
    View less >
    Journal Title
    ACS Applied Materials & Interfaces
    Volume
    12
    Issue
    23
    DOI
    https://doi.org/10.1021/acsami.0c04900
    Subject
    Chemical sciences
    Engineering
    Science & Technology
    Nanoscience & Nanotechnology
    Materials Science, Multidisciplinary
    Science & Technology - Other Topics
    Publication URI
    http://hdl.handle.net/10072/396915
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander