Smart Removal of Dye Pollutants via Dark Adsorption and Light Desorption at Recyclable Bi2O2CO3 Nanosheets Interface
Author(s)
Liu, Haijin
Chen, Min
Wei, Dandan
Ma, Yaqiang
Wang, Fengliang
Zhang, Qianxin
Shi, Jialu
Zhang, Hui
Peng, Jianbiao
Liu, Guoguang
Zhang, Shanqing
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
The adsorbents for water treatment and purification are commonly not recyclable because of the lack of a reagent-less “switch” to readily release the adsorbed compounds. Herein, the interface of Bi2O2CO3 (BOC) nanosheets is designed, synthesized, and modified with citric acid, namely, modified Bi2O2CO3 (m-BOC). The m-BOC is able to selectively adsorb methylene blue (MB) in the dark and the adsorbed MB could be released in the light from m-BOC without the addition of any chemicals. The adsorption mechanism is attributed to the electrostatic attraction between positively charged MB and the negatively charged surface of m-BOC. ...
View more >The adsorbents for water treatment and purification are commonly not recyclable because of the lack of a reagent-less “switch” to readily release the adsorbed compounds. Herein, the interface of Bi2O2CO3 (BOC) nanosheets is designed, synthesized, and modified with citric acid, namely, modified Bi2O2CO3 (m-BOC). The m-BOC is able to selectively adsorb methylene blue (MB) in the dark and the adsorbed MB could be released in the light from m-BOC without the addition of any chemicals. The adsorption mechanism is attributed to the electrostatic attraction between positively charged MB and the negatively charged surface of m-BOC. In contrast, the desorption of MB has resulted from the photo-induced charge redistribution on the surface of m-BOC, which unlocks the coordination bond between m-BOC and the carboxylic group. As a result, BOC is recycled. Such a mechanism was verified by both experimental investigation and DFT calculation. This work provides a promising interfacial engineering strategy for the remediation of dye-polluted water and smart separation in chemical engineering.
View less >
View more >The adsorbents for water treatment and purification are commonly not recyclable because of the lack of a reagent-less “switch” to readily release the adsorbed compounds. Herein, the interface of Bi2O2CO3 (BOC) nanosheets is designed, synthesized, and modified with citric acid, namely, modified Bi2O2CO3 (m-BOC). The m-BOC is able to selectively adsorb methylene blue (MB) in the dark and the adsorbed MB could be released in the light from m-BOC without the addition of any chemicals. The adsorption mechanism is attributed to the electrostatic attraction between positively charged MB and the negatively charged surface of m-BOC. In contrast, the desorption of MB has resulted from the photo-induced charge redistribution on the surface of m-BOC, which unlocks the coordination bond between m-BOC and the carboxylic group. As a result, BOC is recycled. Such a mechanism was verified by both experimental investigation and DFT calculation. This work provides a promising interfacial engineering strategy for the remediation of dye-polluted water and smart separation in chemical engineering.
View less >
Journal Title
ACS Applied Materials & Interfaces
Volume
12
Issue
18
Subject
Chemical sciences
Engineering
Science & Technology
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Science & Technology - Other Topics