Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage
Author(s)
Yuan, Ding
Dou, Yuhai
Xu, Li
Yu, Linping
Cheng, Ningyan
Xia, Qingbing
Hencz, Luke
Ma, Jianmin
Dou, Shi Xue
Zhang, Shanqing
Year published
2020
Metadata
Show full item recordAbstract
Pseudocapacitive energy storage via Li+ storage at the surface/interface of the electrode is promising for achieving both high energy density and high power density in lithium-ion batteries (LIBs). Thus, we created holey graphene (HG) via an etching method, and then in situ grew atomically thin mesoporous NiCo2O4 nanosheets on the HG surface, resulting in a NiCo2O4–HG heterostructure. Since both NiCo2O4 and HG possess atomic thickness and porous structures, the as-prepared nanocomposite enables efficient electrolyte diffusion and mass transfer, providing abundant accessible surface atoms for enhanced redox pseudocapacitance. ...
View more >Pseudocapacitive energy storage via Li+ storage at the surface/interface of the electrode is promising for achieving both high energy density and high power density in lithium-ion batteries (LIBs). Thus, we created holey graphene (HG) via an etching method, and then in situ grew atomically thin mesoporous NiCo2O4 nanosheets on the HG surface, resulting in a NiCo2O4–HG heterostructure. Since both NiCo2O4 and HG possess atomic thickness and porous structures, the as-prepared nanocomposite enables efficient electrolyte diffusion and mass transfer, providing abundant accessible surface atoms for enhanced redox pseudocapacitance. Moreover, the strong coupling effect between NiCo2O4 and graphene produces an ultra-large interfacial area and enhanced electrical conductivity, and subsequently promotes the intercalation pseudocapacitance. Consequently, the NiCo2O4@HG exhibits a high specific capacity of 1103.4 mA h g−1 at 0.2C, ∼88.9% contribution from pseudocapacitance at 1 mV s−1, excellent rate capability, and ultra-long life up to 450 cycles with 931.2 mA h g−1 retention, significantly outperforming previously reported electrodes. This work suggests that the maximum exposure and utilization of the surface/interfacial active sites is vital for the construction of high-performance pseudocapacitive energy storage devices.
View less >
View more >Pseudocapacitive energy storage via Li+ storage at the surface/interface of the electrode is promising for achieving both high energy density and high power density in lithium-ion batteries (LIBs). Thus, we created holey graphene (HG) via an etching method, and then in situ grew atomically thin mesoporous NiCo2O4 nanosheets on the HG surface, resulting in a NiCo2O4–HG heterostructure. Since both NiCo2O4 and HG possess atomic thickness and porous structures, the as-prepared nanocomposite enables efficient electrolyte diffusion and mass transfer, providing abundant accessible surface atoms for enhanced redox pseudocapacitance. Moreover, the strong coupling effect between NiCo2O4 and graphene produces an ultra-large interfacial area and enhanced electrical conductivity, and subsequently promotes the intercalation pseudocapacitance. Consequently, the NiCo2O4@HG exhibits a high specific capacity of 1103.4 mA h g−1 at 0.2C, ∼88.9% contribution from pseudocapacitance at 1 mV s−1, excellent rate capability, and ultra-long life up to 450 cycles with 931.2 mA h g−1 retention, significantly outperforming previously reported electrodes. This work suggests that the maximum exposure and utilization of the surface/interfacial active sites is vital for the construction of high-performance pseudocapacitive energy storage devices.
View less >
Journal Title
Journal of Materials Chemistry A
Volume
8
Issue
27
Subject
Macromolecular and materials chemistry
Materials engineering
Other engineering
Science & Technology
Physical Sciences
Chemistry, Physical
Energy & Fuels