• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring

    Author(s)
    Dinh, T
    Nguyen, T
    Phan, HP
    Nguyen, NT
    Dao, DV
    Bell, J
    Griffith University Author(s)
    Dao, Dzung V.
    Nguyen, Nam-Trung
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Respiration signals are a vital sign of life. Monitoring human breath provides critical information for health assessment, diagnosis, and treatment for respiratory diseases such as asthma, chronic bronchitis, and emphysema. Stretchable and wearable respiration sensors have recently attracted considerable interest toward monitoring physiological signals in the era of real time and portable healthcare systems. This review provides a snapshot on the recent development of stretchable sensors and wearable technologies for respiration monitoring. The article offers the fundamental guideline on the sensing mechanisms and design ...
    View more >
    Respiration signals are a vital sign of life. Monitoring human breath provides critical information for health assessment, diagnosis, and treatment for respiratory diseases such as asthma, chronic bronchitis, and emphysema. Stretchable and wearable respiration sensors have recently attracted considerable interest toward monitoring physiological signals in the era of real time and portable healthcare systems. This review provides a snapshot on the recent development of stretchable sensors and wearable technologies for respiration monitoring. The article offers the fundamental guideline on the sensing mechanisms and design concepts of stretchable sensors for detecting vital breath signals such as temperature, humidity, airflow, stress and strain. A highlight on the recent progress in the integration of variable sensing components outlines feasible pathways towards multifunctional and multimodal sensor platforms. Structural designs of nanomaterials and platforms for stretchable respiration sensors are reviewed.
    View less >
    Journal Title
    Biosensors and Bioelectronics
    Volume
    166
    DOI
    https://doi.org/10.1016/j.bios.2020.112460
    Subject
    Analytical chemistry
    Biomedical engineering
    Nanotechnology
    Breath sensors
    Physiological monitoring
    Respiration sensors
    Stretchable sensors
    Wearable sensors
    Publication URI
    http://hdl.handle.net/10072/397060
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander