Drought and heat wave impacts on grassland carbon cycling across hierarchical levels

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Li, Linfeng
Zheng, Zhenzhen
Biederman, Joel A
Qian, Ruyan
Ran, Qinwei
Zhang, Biao
Xu, Cong
Wang, Fang
Zhou, Shutong
Che, Rongxiao
Dong, Junfu
Xu, Zhihong
Cui, Xiaoyong
Hao, Yanbin
Wang, Yanfen
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Droughts and heat waves are increasing in magnitude and frequency, altering the carbon cycle. However, understanding of the underlying response mechanisms remains poor, especially for the combination (hot drought). We conducted a 4-year field experiment to examine both individual and interactive effects of drought and heat wave on carbon cycling of a semiarid grassland across individual, functional group, community and ecosystem levels. Drought did not change below-ground biomass (BGB) or above-ground biomass (AGB) due to compensation effects between grass and non-grass functional groups. However, consistently decreased BGB ...
View more >Droughts and heat waves are increasing in magnitude and frequency, altering the carbon cycle. However, understanding of the underlying response mechanisms remains poor, especially for the combination (hot drought). We conducted a 4-year field experiment to examine both individual and interactive effects of drought and heat wave on carbon cycling of a semiarid grassland across individual, functional group, community and ecosystem levels. Drought did not change below-ground biomass (BGB) or above-ground biomass (AGB) due to compensation effects between grass and non-grass functional groups. However, consistently decreased BGB under heat waves limited such compensation effects, resulting in reduced AGB. Ecosystem CO2 fluxes were suppressed by droughts, attributed to stomatal closure-induced reductions in leaf photosynthesis and decreased AGB of grasses, while CO2 fluxes were little affected by heat waves. Overall the hot drought produced the lowest leaf photosynthesis, AGB and ecosystem CO2 fluxes although the interactions between heat wave and drought were usually not significant. Our results highlight that the functional group compensatory effects that maintain community-level AGB rely on feedback of root system responses, and that plant adjustments at the individual level, together with shifts in composition at the functional group level, co-regulate ecosystem carbon sink strength under climate extremes.
View less >
View more >Droughts and heat waves are increasing in magnitude and frequency, altering the carbon cycle. However, understanding of the underlying response mechanisms remains poor, especially for the combination (hot drought). We conducted a 4-year field experiment to examine both individual and interactive effects of drought and heat wave on carbon cycling of a semiarid grassland across individual, functional group, community and ecosystem levels. Drought did not change below-ground biomass (BGB) or above-ground biomass (AGB) due to compensation effects between grass and non-grass functional groups. However, consistently decreased BGB under heat waves limited such compensation effects, resulting in reduced AGB. Ecosystem CO2 fluxes were suppressed by droughts, attributed to stomatal closure-induced reductions in leaf photosynthesis and decreased AGB of grasses, while CO2 fluxes were little affected by heat waves. Overall the hot drought produced the lowest leaf photosynthesis, AGB and ecosystem CO2 fluxes although the interactions between heat wave and drought were usually not significant. Our results highlight that the functional group compensatory effects that maintain community-level AGB rely on feedback of root system responses, and that plant adjustments at the individual level, together with shifts in composition at the functional group level, co-regulate ecosystem carbon sink strength under climate extremes.
View less >
Journal Title
Plant, Cell & Environment
Copyright Statement
© 2020 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Drought and heat wave impacts on grassland carbon cycling across hierarchical levels, PPlant, Cell & Environment, 2020, which has been published in final form at https://doi.org/10.1111/pce.13767. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
Subject
Biological sciences
Agricultural, veterinary and food sciences
Science & Technology
Life Sciences & Biomedicine
Plant Sciences
biomass
climate extremes