• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ant Lion Optimizer: A Comprehensive Survey of Its Variants and Applications

    Author(s)
    Abualigah, Laith
    Shehab, Mohammad
    Alshinwan, Mohammad
    Mirjalili, Seyedali
    Abd Elaziz, Mohamed
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    This paper introduces a comprehensive overview of the Ant Lion Optimizer (ALO). ALO is a novel metaheuristic swarm-based approach introduced by Mirjalili in 2015 to emulate the hunting behavior of ant lions in nature life. The review is highlighted the applications that are utilized ALO algorithm to solve various optimization problems. In ALO, the best solution is determined to enhance the performance of the functional and efficient during the optimization process by finding the minimum or maximum values to solve a certain problem. Metaheuristic algorithms have become the focus of research due to introduce of decision-making ...
    View more >
    This paper introduces a comprehensive overview of the Ant Lion Optimizer (ALO). ALO is a novel metaheuristic swarm-based approach introduced by Mirjalili in 2015 to emulate the hunting behavior of ant lions in nature life. The review is highlighted the applications that are utilized ALO algorithm to solve various optimization problems. In ALO, the best solution is determined to enhance the performance of the functional and efficient during the optimization process by finding the minimum or maximum values to solve a certain problem. Metaheuristic algorithms have become the focus of research due to introduce of decision-making and asses the benefits in solving various optimization problems. Also, a review of ALO variants is presented in this paper such as binary, modification, hybridization, enhanced, and others. The classifications of the ALO’s applications include the benchmark functions, machine learning applications, networks applications, engineering applications, software engineering, and Image processing. Finally, According to the reviewed papers published in the literature, the ALO algorithm is mostly utilized in solving various optimization problems. Presenting an overview and reviewing the ALO applications are the main aims of this review paper.
    View less >
    Journal Title
    Archives of Computational Methods in Engineering
    DOI
    https://doi.org/10.1007/s11831-020-09420-6
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Mathematical sciences
    Engineering
    Science & Technology
    Physical Sciences
    Engineering, Multidisciplinary
    Interdisciplinary Applications
    Publication URI
    http://hdl.handle.net/10072/397174
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander