• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Self-Supervised Multiscale Adversarial Regression Network for Stereo Disparity Estimation

    Author(s)
    Wang, Chen
    Bai, Xiao
    Wang, Xiang
    Liu, Xianglong
    Zhou, Jun
    Wu, Xinyu
    Li, Hongdong
    Tao, Dacheng
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Deep learning approaches have significantly contributed to recent progress in stereo matching. These deep stereo matching methods are usually based on supervised training, which requires a large amount of high-quality ground-truth depth map annotations that are expensive to collect. Furthermore, only a limited quantity of stereo vision training data are currently available, obtained either by active sensors (Lidar and ToF cameras) or through computer graphics simulations and not meeting requirements for deep supervised training. Here, we propose a novel deep stereo approach called the ``self-supervised multiscale adversarial ...
    View more >
    Deep learning approaches have significantly contributed to recent progress in stereo matching. These deep stereo matching methods are usually based on supervised training, which requires a large amount of high-quality ground-truth depth map annotations that are expensive to collect. Furthermore, only a limited quantity of stereo vision training data are currently available, obtained either by active sensors (Lidar and ToF cameras) or through computer graphics simulations and not meeting requirements for deep supervised training. Here, we propose a novel deep stereo approach called the ``self-supervised multiscale adversarial regression network (SMAR-Net),'' which relaxes the need for ground-truth depth maps for training. Specifically, we design a two-stage network. The first stage is a disparity regressor, in which a regression network estimates disparity values from stacked stereo image pairs. Stereo image stacking method is a novel contribution as it not only contains the spatial appearances of stereo images but also implies matching correspondences with different disparity values. In the second stage, a synthetic left image is generated based on the left-right consistency assumption. Our network is trained by minimizing a hybrid loss function composed of a content loss and an adversarial loss. The content loss minimizes the average warping error between the synthetic images and the real ones. In contrast to the generative adversarial loss, our proposed adversarial loss penalizes mismatches using multiscale features. This constrains the synthetic image and real image as being pixelwise identical instead of just belonging to the same distribution. Furthermore, the combined utilization of multiscale feature extraction in both the content loss and adversarial loss further improves the adaptability of SMAR-Net in ill-posed regions. Experiments on multiple benchmark datasets show that SMAR-Net outperforms the current state-of-the-art self-supervised methods and achieves comparable outcomes to supervised methods. The source code can be accessed at: https://github.com/Dawnstar8411/SMAR-Net.
    View less >
    Journal Title
    IEEE Transactions on Cybernetics
    DOI
    https://doi.org/10.1109/tcyb.2020.2999492
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Artificial intelligence
    Applied mathematics
    Electronics, sensors and digital hardware
    Publication URI
    http://hdl.handle.net/10072/397213
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander