• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Random Switching of the ModA11 Type III DNA Methyltransferase of Neisseria meningitidis Regulates Entner-Doudoroff Aldolase Expression by a Methylation Change in the eda Promoter Region

    Thumbnail
    View/Open
    Jen442443-Accepted.pdf (809.0Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Jen, Freda E-C
    Scott, Adeana L
    Tan, Aimee
    Seib, Kate L
    Jennings, Michael P
    Griffith University Author(s)
    Jen, Freda E.
    Seib, Kate
    Jennings, Michael P.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Phase variable DNA methyltransferases (Mods) mediate epigenetic regulation of gene expression. These phase variable regulons, called phasevarions, have been shown to regulate virulence and immunoevasion in multiple bacterial pathogens. How genome methylation switching mediates gene regulation is unresolved. Neisseria meningitidis remains a major cause of sepsis and meningitis worldwide. Previously we reported that phase variation (rapid on/off switching) of the meningococcal ModA11 methyltransferase regulates 285 genes. Here we show a bioinformatic analysis that reveals only 26 of the regulated genes have a methylation site ...
    View more >
    Phase variable DNA methyltransferases (Mods) mediate epigenetic regulation of gene expression. These phase variable regulons, called phasevarions, have been shown to regulate virulence and immunoevasion in multiple bacterial pathogens. How genome methylation switching mediates gene regulation is unresolved. Neisseria meningitidis remains a major cause of sepsis and meningitis worldwide. Previously we reported that phase variation (rapid on/off switching) of the meningococcal ModA11 methyltransferase regulates 285 genes. Here we show a bioinformatic analysis that reveals only 26 of the regulated genes have a methylation site located upstream of the gene with potential for direct effect of methylation on transcription. To investigate how methylation changes are “read” to alter gene expression, we used a lacZ gene fusion approach. We showed a 182 nucleotide region upstream of the eda gene (Entner-Doudoroff aldolase) is sufficient to impart methylation-dependent regulation of eda. Site directed mutagenesis of the 5’-ACGTm6AGG-3’ ModA11 site upstream of the eda gene showed that methylation of this site modulates eda expression. We show that eda is regulated by the PhoB homologue MisR, and that a MisR binding motif overlaps with the ModA11 methylation site. In a MisR mutant, regulation of eda is uncoupled from regulation by ModA11 phasevarion switching. The on/off switching of ModA11 leads to the presence or absence of a N6-methyladenine modification at thousands of sites in the genome. Most of these modifications have no impact on gene regulation. Moreover, the majority of the 285 gene regulon that is controlled by ModA11 phasevarion switching (259/285) are not directly controlled by methylation changes in the promoter region of the regulated genes. Our data are consistent with direct control via methylation of a subset of the regulon, like Eda, whose regulation will trigger secondary effects in expression of many genes.
    View less >
    Journal Title
    Journal of Molecular Biology
    DOI
    https://doi.org/10.1016/j.jmb.2020.08.024
    Copyright Statement
    © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Medicinal and biomolecular chemistry
    Biochemistry and cell biology
    Microbiology
    Publication URI
    http://hdl.handle.net/10072/397274
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander