• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Differences between models of partial thickness and subendocardial ischaemia in terms of sensitivity analyses of ST-segment epicardial potential distributions

    Thumbnail
    View/Open
    Johnston264493Accepted.pdf (3.974Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Johnston, Barbara M
    Johnston, Peter R
    Griffith University Author(s)
    Johnston, Peter R.
    Johnston, Barbara M.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Mathematical modelling is a useful technique to help elucidate the connection between non-transmural ischaemia and ST elevation and depression of the ECG. Generally, models represent non-transmural ischaemia using an ischaemic zone that extends from the endocardium partway to the epicardium. However, recent experimental work has suggested that ischaemia typically arises within the heart wall. This work examines the effect of modelling cardiac ischaemia in the left ventricle using two different models: subendocardial ischaemia and partial thickness ischaemia, representing the first and second scenarios, respectively. We found ...
    View more >
    Mathematical modelling is a useful technique to help elucidate the connection between non-transmural ischaemia and ST elevation and depression of the ECG. Generally, models represent non-transmural ischaemia using an ischaemic zone that extends from the endocardium partway to the epicardium. However, recent experimental work has suggested that ischaemia typically arises within the heart wall. This work examines the effect of modelling cardiac ischaemia in the left ventricle using two different models: subendocardial ischaemia and partial thickness ischaemia, representing the first and second scenarios, respectively. We found that it is possible, only in the model of subendocardial ischaemia, to see a single minimum on the epicardial surface above the ischaemic region, and this only occurs for low ischaemic thicknesses. This may help to explain the rarity of ST depression that is located over the ischaemic region. It was also found that, in both models, the epicardial potential distribution is most sensitive to the proximity of the ischaemic region to the epicardium, rather than to the thickness of the ischaemic region. Since proximity does not indicate the thickness of the ischaemic region, this suggests a reason why it may be difficult to determine the degree of ischaemia using the ST segment of the ECG.
    View less >
    Journal Title
    Mathematical Biosciences
    Volume
    318
    DOI
    https://doi.org/10.1016/j.mbs.2019.108273
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Mathematical sciences
    Biological sciences
    Science & Technology
    Life Sciences & Biomedicine
    Biology
    Mathematical & Computational Biology
    Life Sciences & Biomedicine - Other Topics
    Publication URI
    http://hdl.handle.net/10072/397284
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander