• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Full-scale experimental study on the single and group of soil-cement columns under vertical load applying for buildings

    Thumbnail
    View/Open
    Pham422508-Published.pdf (1.816Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Do, HD
    Pham, VN
    Phan, CT
    Puppala, A
    Oh, E
    Griffith University Author(s)
    Oh, Erwin
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    This article presents the results of in-situ research on the soil-cement (SC) column as the foundation of buildings. A physical model was constructed consisting of two single SC columns, one group of three SC columns (G1), and another group of five SC columns (G2) with a diameter of 0.6 m and a length of 7.5 m. Among ten experimental columns, four SC columns were instrumented by strain gages to determine the load transfer and analysis of the skin and toe resistance distributions along the depth of the SC columns. These columns were constructed by the wet mixing method according to Japanese technology with two static blades ...
    View more >
    This article presents the results of in-situ research on the soil-cement (SC) column as the foundation of buildings. A physical model was constructed consisting of two single SC columns, one group of three SC columns (G1), and another group of five SC columns (G2) with a diameter of 0.6 m and a length of 7.5 m. Among ten experimental columns, four SC columns were instrumented by strain gages to determine the load transfer and analysis of the skin and toe resistance distributions along the depth of the SC columns. These columns were constructed by the wet mixing method according to Japanese technology with two static blades to increase the quality of the mixture. The bearing capacity of the single SC column was measured as 1,180 kN, and the top and toe displacements were measured to be approximately 36.6 mm and 27.7 mm, respectively. For the group of SC columns, the skin resistance of the center and outer columns decreased by 4.17 % and 16.16 %, respectively, in comparison to the single column. The toe resistance of the SC column in the groups was significantly lower than that of the single column, from 45.10 % for the group G1, and up to 60.78 % for the group G2. The effect of the group of SC columns was also determined from the experiment with the group coefficients around 0.664 for group G1 and 0.554 for group G2. The research results from the full-scale model are essential in evaluating the group effects of the SC columns, especially in applications for the foundation of buildings.
    View less >
    Journal Title
    Geotechnical Testing Journal
    Volume
    44
    Issue
    4
    DOI
    https://doi.org/10.1520/GTJ20190210
    Copyright Statement
    © 2020 ASTM International. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/397421
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander