Open-Source Automated Centrifugal Pump Test Rig

View/ Open
Author(s)
Semenzin, Clayton S
Mapley, Martin
Wu, Eric
Pauls, Jo P
Simpson, Benjamin
Gregory, Shaun D
Tansley, Geoff
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Design methods for large industrial pumps are well developed, but they cannot be relied upon when designing specialised miniature pumps, due to scaling issues. Therefore, the design and development phase of small pumps demand numerous experimental tests to ensure a viable prototype. Of initial interest is hydraulic design in the form of pump performance and efficiency curves. This project aimed to produce an automated test rig capable of generating both the performance (P-Q – pressure vs. flow rate) and efficiency curves that are reliable and repeatable. The apparatus is largely customizable and suitable for a range of smaller ...
View more >Design methods for large industrial pumps are well developed, but they cannot be relied upon when designing specialised miniature pumps, due to scaling issues. Therefore, the design and development phase of small pumps demand numerous experimental tests to ensure a viable prototype. Of initial interest is hydraulic design in the form of pump performance and efficiency curves. This project aimed to produce an automated test rig capable of generating both the performance (P-Q – pressure vs. flow rate) and efficiency curves that are reliable and repeatable. The apparatus is largely customizable and suitable for a range of smaller pump sizes. The pump impeller and volute were 3D printed, allowing for design flexibility and rapid prototyping and testing. The test loop was automated which allowed the flow rate to be incremented from 0 L/min to the maximum flow rate. At each step the pressure, flow rate, voltage and current were recorded to generate the P – Q and efficiency curves. Repeatability results showed low variations of ±3 mmHg (400 Pa) in pressure and ±2% in hydraulic efficiency. The given setup can be used to compare and evaluate the hydraulic performance of various pump designs.
View less >
View more >Design methods for large industrial pumps are well developed, but they cannot be relied upon when designing specialised miniature pumps, due to scaling issues. Therefore, the design and development phase of small pumps demand numerous experimental tests to ensure a viable prototype. Of initial interest is hydraulic design in the form of pump performance and efficiency curves. This project aimed to produce an automated test rig capable of generating both the performance (P-Q – pressure vs. flow rate) and efficiency curves that are reliable and repeatable. The apparatus is largely customizable and suitable for a range of smaller pump sizes. The pump impeller and volute were 3D printed, allowing for design flexibility and rapid prototyping and testing. The test loop was automated which allowed the flow rate to be incremented from 0 L/min to the maximum flow rate. At each step the pressure, flow rate, voltage and current were recorded to generate the P – Q and efficiency curves. Repeatability results showed low variations of ±3 mmHg (400 Pa) in pressure and ±2% in hydraulic efficiency. The given setup can be used to compare and evaluate the hydraulic performance of various pump designs.
View less >
Journal Title
HardwareX
Copyright Statement
© The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Subject
Built Environment and Design