• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Covalent organic framework membrane for size selective release of small molecules and peptide in vitro

    Author(s)
    Rezvani Alanagh, Hamideh
    Rostami, Iman
    Taleb, Mohammad
    Gao, Xiaoqing
    Zhang, Yadong
    Khattak, Abdul Muqsit
    He, Xiao
    Li, Lianshan
    Tang, Zhiyong
    Griffith University Author(s)
    Tang, Zhiyong
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The ability to control small drug release is crucial in biomedicine, especially for inhibiting the side effects of drugs, but it is still challenging. Herein, to mimic the controlled release of drugs, the release of organic molecules, e.g., small organic dyes and peptides, through Covalent Organic Framework (COF) membranes with ordered nanoscale pores has been investigated, showing constant zero-order release behaviours. Meanwhile, biological assessments show the good biocompatibility of the COF membrane-based release system, and the high stability of the COF membrane was manifested by the long-term release of small molecules ...
    View more >
    The ability to control small drug release is crucial in biomedicine, especially for inhibiting the side effects of drugs, but it is still challenging. Herein, to mimic the controlled release of drugs, the release of organic molecules, e.g., small organic dyes and peptides, through Covalent Organic Framework (COF) membranes with ordered nanoscale pores has been investigated, showing constant zero-order release behaviours. Meanwhile, biological assessments show the good biocompatibility of the COF membrane-based release system, and the high stability of the COF membrane was manifested by the long-term release of small molecules in aqueous media.
    View less >
    Journal Title
    Journal of Materials Chemistry B
    DOI
    https://doi.org/10.1039/d0tb01416h
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Macromolecular and Materials Chemistry
    Biomedical Engineering
    Publication URI
    http://hdl.handle.net/10072/397436
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander