• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Lapatinib inhibits doxorubicin induced migration of HER2-positive breast cancer cells

    Author(s)
    Chintalaramulu, Naveen
    Vadivelu, Raja
    Nam-Trung, Nguyen
    Cock, Ian Edwin
    Griffith University Author(s)
    Cock, Ian E.
    Nguyen, Nam-Trung
    Vadivelu, Raja
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Inflammatory breast cancer (IBC) is an uncommon and highly aggressive form of breast cancer. The disease is characterized by rapid progression with approximately 50% of IBC patients to have human epidermal growth factor receptor 2 (HER2) amplification. HER2-positive IBC is associated with unfavourable prognosis and increased risk of brain metastasis. Ironically, HER2-positive metastatic breast cancer is still prevalent where therapeutic targeting of HER2-receptor is well developed. In addition, the ability to accurately predict the risk of metastatic potential in these cells poses a substantial challenge. Lapatinib (Lap), a ...
    View more >
    Inflammatory breast cancer (IBC) is an uncommon and highly aggressive form of breast cancer. The disease is characterized by rapid progression with approximately 50% of IBC patients to have human epidermal growth factor receptor 2 (HER2) amplification. HER2-positive IBC is associated with unfavourable prognosis and increased risk of brain metastasis. Ironically, HER2-positive metastatic breast cancer is still prevalent where therapeutic targeting of HER2-receptor is well developed. In addition, the ability to accurately predict the risk of metastatic potential in these cells poses a substantial challenge. Lapatinib (Lap), a dual kinase inhibitor of HER2 and epidermal growth factor receptor is used in the treatment of advanced HER-2 positive breast cancers and is currently being evaluated in the adjuvant setting. In this study, we report the effectiveness of Lap in the suppression of low-dose response to doxorubicin (Dox) in HER2-positive SKBR3 cells. Upon treatment of SKBR3 cells with 0.1 µM of Dox, the cell viability was significantly increased as compared to the human mammary fibroblasts, and triple-negative human breast cancer MDA-MB-231 cells. Interestingly, the effect of 0.1 µM Dox revealed morphological changes consistent with a significant increase in the formation of prominent F-actin filaments and mitochondrial spread compared with the control SKBR3 cells. Furthermore, an enhanced migration was also evident in these cells. However, a combinational dose of 0.1 µM Dox + 5 µM Lap suppressed the observed phenotypic changes in the 0.1 µM Dox treated SKBR3 cells. There was a significant difference in the prominent F-actin filaments and the mitochondrial spread compared with the 0.1 µM Dox versus combination regimen of 0.1 µM Dox + 5 µM Lap. In addition, the combinational therapy showed a decrease in the percentage of wound closure when compared to the control. Hence, the combinational therapy in which Lap suppresses the low-dose effect of Dox in SKBR3 cells may provide an effective intervention strategy for reducing the risk of metastasis in HER2-positive breast cancers.
    View less >
    Journal Title
    Inflammopharmacology
    DOI
    https://doi.org/10.1007/s10787-020-00711-9
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Pharmacology and Pharmaceutical Sciences
    Science & Technology
    Life Sciences & Biomedicine
    Immunology
    Pharmacology & Pharmacy
    Toxicology
    Publication URI
    http://hdl.handle.net/10072/397452
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander