Electrocatalytic oxidation of methane to ethanol via NiO/Ni interface
Author(s)
Song, Y
Zhao, Y
Nan, G
Chen, W
Guo, Z
Li, S
Tang, Z
Wei, W
Sun, Y
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Electrocatalytic conversion of methane (CH4) to valuable chemicals under mild conditions is an attractive approach that combines the direct utilization of natural gas as a hydrocarbon feedstock and the chemical storage of renewable electricity. However, it remains a great challenge due to the intrinsic chemical inertness of CH4. Here we report that a NiO/Ni interface constructed by calcination can act as the active site for the electrooxidation of CH4 to alcohols especially ethanol. With the optimized NiO/Ni interface catalyst, an 89 % Faradaic efficiency (FE) for ethanol production with a yield of 25 μmol∙gNiO−1∙h−1 at 1.40 ...
View more >Electrocatalytic conversion of methane (CH4) to valuable chemicals under mild conditions is an attractive approach that combines the direct utilization of natural gas as a hydrocarbon feedstock and the chemical storage of renewable electricity. However, it remains a great challenge due to the intrinsic chemical inertness of CH4. Here we report that a NiO/Ni interface constructed by calcination can act as the active site for the electrooxidation of CH4 to alcohols especially ethanol. With the optimized NiO/Ni interface catalyst, an 89 % Faradaic efficiency (FE) for ethanol production with a yield of 25 μmol∙gNiO−1∙h−1 at 1.40 V versus reversible hydrogen electrode (RHE) was achieved. Experiments and density functional theory (DFT) calculations demonstrated that the NiO/Ni interface enables efficient C–H activation and C–C coupling, leading to the highly selective formation of ethanol from CH4 electrooxidation.
View less >
View more >Electrocatalytic conversion of methane (CH4) to valuable chemicals under mild conditions is an attractive approach that combines the direct utilization of natural gas as a hydrocarbon feedstock and the chemical storage of renewable electricity. However, it remains a great challenge due to the intrinsic chemical inertness of CH4. Here we report that a NiO/Ni interface constructed by calcination can act as the active site for the electrooxidation of CH4 to alcohols especially ethanol. With the optimized NiO/Ni interface catalyst, an 89 % Faradaic efficiency (FE) for ethanol production with a yield of 25 μmol∙gNiO−1∙h−1 at 1.40 V versus reversible hydrogen electrode (RHE) was achieved. Experiments and density functional theory (DFT) calculations demonstrated that the NiO/Ni interface enables efficient C–H activation and C–C coupling, leading to the highly selective formation of ethanol from CH4 electrooxidation.
View less >
Journal Title
Applied Catalysis B: Environmental
Volume
270
Subject
Physical chemistry
Chemical engineering
Environmental engineering