• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A New Approach to Explore the Surface Profile of Clay Soil Using White Light Interferometry

    Thumbnail
    View/Open
    Yang427678-Published.pdf (8.633Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Yang, Suchun
    Liu, Junwei
    Xu, Longfei
    Zhang, Mingyi
    Jeng, Dong-Sheng
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    In order to have a better understanding of the real contact area of granular materials, the white light interference method is applied to explore the real surface morphology of clay soils under high stress. Analysis of the surface profile indicates that there exists a support point height z0 with the highest distribution frequency. A concept of a real contact region (from z0 to z0 + d90; d90 represents the particle size corresponding to 90% of the volume fraction) is proposed by combining a surface profile with the particle size distribution of clay soil. It was found that under the compressive stress of 106 MPa–529 MPa, the ...
    View more >
    In order to have a better understanding of the real contact area of granular materials, the white light interference method is applied to explore the real surface morphology of clay soils under high stress. Analysis of the surface profile indicates that there exists a support point height z0 with the highest distribution frequency. A concept of a real contact region (from z0 to z0 + d90; d90 represents the particle size corresponding to 90% of the volume fraction) is proposed by combining a surface profile with the particle size distribution of clay soil. It was found that under the compressive stress of 106 MPa–529 MPa, the actual contact area ratio of clay soil varies between 0.375 and 0.431. This demonstrates an increasing trend with the rise of stress. On the contrary, the apparent porosity decreases with an increasing stress, varying between 0.554 and 0.525. In addition, as the compressive stress increases, the cumulative frequency of apparent profile height (from z0 − d90 to z0 + d90) has a concentrated tendency with a limited value of 0.9.
    View less >
    Journal Title
    Sensors
    Volume
    20
    Issue
    11
    DOI
    https://doi.org/10.3390/s20113009
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Analytical chemistry
    Ecology
    Soil sciences
    Science & Technology
    Physical Sciences
    Chemistry, Analytical
    Publication URI
    http://hdl.handle.net/10072/397537
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander