Show simple item record

dc.contributor.authorYan, Junqing
dc.contributor.authorLiu, Jing
dc.contributor.authorJi, Yujin
dc.contributor.authorBatmunkh, Munkhbayar
dc.contributor.authorLi, Dan
dc.contributor.authorLiu, Xiaoshuang
dc.contributor.authorCao, Xingzhong
dc.contributor.authorLi, Youyong
dc.contributor.authorLiu, Shengzhong
dc.contributor.authorMa, Tianyi
dc.date.accessioned2020-09-18T04:44:52Z
dc.date.available2020-09-18T04:44:52Z
dc.date.issued2020
dc.identifier.issn2155-5435
dc.identifier.doi10.1021/acscatal.0c02063
dc.identifier.urihttp://hdl.handle.net/10072/397547
dc.description.abstractInterfacial resistance of the charge carriers across TiO2 to cocatalysts is one of the main limiting factors for realizing high photocatalytic efficiency of water oxidation. Herein, an amorphous TiOx layer is introduced on the surface of crystalline TiO2 catalyst to form the core–shell structure (am@TiO2) via an oxidation corrosion method. Owing to the surface disordered Ti–O layer, the obtained am@TiO2 exposes abundant −OH groups for the homogeneous loading of nanosized IrOx, while the charge carrier interfacial migration is substantially enhanced. The as-prepared IrOx-am@TiO2 exhibits photocatalytic water oxidation performance with an O2 evolution rate of 143.6 μmol/g·h, which is approximately 14 times higher than that of the bare am@TiO2. Moreover, an apparent quantum yield (AQY) of 18.99% is obtained under LED-405 illumination. This work provides a direction for improving the photocatalytic performance and helps to gain a fundamental understanding of the water oxidation steps.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS Publications)
dc.relation.ispartofpagefrom8742
dc.relation.ispartofpageto8750
dc.relation.ispartofissue15
dc.relation.ispartofjournalACS Catalysis
dc.relation.ispartofvolume10
dc.subject.fieldofresearchInorganic chemistry
dc.subject.fieldofresearchOrganic chemistry
dc.subject.fieldofresearchChemical engineering
dc.subject.fieldofresearchcode3402
dc.subject.fieldofresearchcode3405
dc.subject.fieldofresearchcode4004
dc.subject.keywordsScience & Technology
dc.subject.keywordsPhysical Sciences
dc.subject.keywordsChemistry, Physical
dc.subject.keywordsChemistry
dc.subject.keywordsTiO2
dc.titleSurface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationYan, J; Liu, J; Ji, Y; Batmunkh, M; Li, D; Liu, X; Cao, X; Li, Y; Liu, S; Ma, T, Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation, ACS Catalysis, 2020, 10 (15), pp. 8742-8750
dc.date.updated2020-09-15T23:28:08Z
dc.description.versionAccepted Manuscript (AM)
gro.rights.copyrightThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, © 2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c02063
gro.hasfulltextFull Text
gro.griffith.authorBatmunkh, Munkhbayar


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record