Coral Reef Emissions of Atmospheric Dimethylsulfide and the Influence on Marine Aerosols in the Southern Great Barrier Reef, Australia

View/ Open
File version
Version of Record (VoR)
Author(s)
Jackson, RL
Gabric, AJ
Woodhouse, MT
Swan, HB
Jones, GB
Cropp, R
Deschaseaux, ESM
Year published
2020
Metadata
Show full item recordAbstract
Variability in atmospheric dimethylsulfide (DMSa) and the potential influence on atmospheric aerosols was investigated at Heron Island in the southern Great Barrier Reef (GBR), Australia. This work compiles previously published DMSa data (reported in Swan, Jones, Deschaseaux, & Eyre, 2017, https://doi.org/10.5194/bg‐14‐229‐2017), with additional surveys of DMSa, atmospheric particle number concentration, and other oceanic and atmospheric data sets. DMSa was higher in summer (mean 3.2 nmol m−3/78 ppt) than winter (mean 1.3 nmol m−3/32 ppt), reflective of seasonal shifts in phytoplankton biomass and emissions from corals in ...
View more >Variability in atmospheric dimethylsulfide (DMSa) and the potential influence on atmospheric aerosols was investigated at Heron Island in the southern Great Barrier Reef (GBR), Australia. This work compiles previously published DMSa data (reported in Swan, Jones, Deschaseaux, & Eyre, 2017, https://doi.org/10.5194/bg‐14‐229‐2017), with additional surveys of DMSa, atmospheric particle number concentration, and other oceanic and atmospheric data sets. DMSa was higher in summer (mean 3.2 nmol m−3/78 ppt) than winter (mean 1.3 nmol m−3/32 ppt), reflective of seasonal shifts in phytoplankton biomass and emissions from corals in the southern GBR. Seasonally extreme spikes in DMSa were detected during low tide and low wind speed, supporting findings that the coral reef can be an important source of DMSa above background oceanic emissions. A significant link was present between DMSa and aerosol concentration (ranging from 0.5 to 2.5 μm) during calm, daylight hours, when conditions were optimal for the local oxidation of DMSa to sulfate aerosol precursors. This link may reflect condensational growth of existing fine particles (< 0.5 μm), which is the dominant pathway by which biogenic trace gases influence aerosols in the marine boundary layer. Aerosol concentration significantly correlated with reduced surface solar irradiance and sea surface temperature, which is potential evidence of a local negative feedback mitigating coral physiological stress. These findings provide a step toward a better understanding of the processes influencing DMSa and aerosol concentrations and of the consequences for the local radiative balance over coral reefs; an increasingly important topic with ongoing ocean warming and coral bleaching.
View less >
View more >Variability in atmospheric dimethylsulfide (DMSa) and the potential influence on atmospheric aerosols was investigated at Heron Island in the southern Great Barrier Reef (GBR), Australia. This work compiles previously published DMSa data (reported in Swan, Jones, Deschaseaux, & Eyre, 2017, https://doi.org/10.5194/bg‐14‐229‐2017), with additional surveys of DMSa, atmospheric particle number concentration, and other oceanic and atmospheric data sets. DMSa was higher in summer (mean 3.2 nmol m−3/78 ppt) than winter (mean 1.3 nmol m−3/32 ppt), reflective of seasonal shifts in phytoplankton biomass and emissions from corals in the southern GBR. Seasonally extreme spikes in DMSa were detected during low tide and low wind speed, supporting findings that the coral reef can be an important source of DMSa above background oceanic emissions. A significant link was present between DMSa and aerosol concentration (ranging from 0.5 to 2.5 μm) during calm, daylight hours, when conditions were optimal for the local oxidation of DMSa to sulfate aerosol precursors. This link may reflect condensational growth of existing fine particles (< 0.5 μm), which is the dominant pathway by which biogenic trace gases influence aerosols in the marine boundary layer. Aerosol concentration significantly correlated with reduced surface solar irradiance and sea surface temperature, which is potential evidence of a local negative feedback mitigating coral physiological stress. These findings provide a step toward a better understanding of the processes influencing DMSa and aerosol concentrations and of the consequences for the local radiative balance over coral reefs; an increasingly important topic with ongoing ocean warming and coral bleaching.
View less >
Journal Title
Journal of Geophysical Research: Atmospheres
Volume
125
Issue
7
Copyright Statement
© 2020. The Authors.This is an open access article under theterms of the Creative Commons Attribution License, which permits use,distribution and reproduction in anymedium, provided the original work isproperly cited
Subject
Environmental Sciences
Atmospheric Sciences
Physical Geography and Environmental Geoscience
Science & Technology
Physical Sciences
Meteorology & Atmospheric Sciences
dimethylsulfide
coral reef