Knockdown of TXNDC9 induces apoptosis and autophagy in glioma and mediates cell differentiation by p53 activation

View/ Open
Author(s)
Zheng, Tingting
Chen, Keke
Zhang, Xue
Feng, Huanhuan
Shi, Yu
Liu, Li
Zhang, Jun
Chen, Yun
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Glioma is the most common malignant brain tumor. Because of its high degree of malignancy, the effect of surgical treatment, radiotherapy, chemotherapy, or immunotherapy is not ideal. TXNDC9 belongs to thioredoxin domain-containing proteins, which is involved in tumor progression. However, no research associated with TXNDC9 has been reported in glioma. In this study, we found that TXNDC9 was upregulated in glioma. Knockdown of TXNDC9 would prevent proliferation and metastasis, induce the apoptosis rate of glioma cells, and promote the expression Cleaved-caspase3, Cleaved-caspase8, Cleaved-caspase9. Meanwhile, knockdown of ...
View more >Glioma is the most common malignant brain tumor. Because of its high degree of malignancy, the effect of surgical treatment, radiotherapy, chemotherapy, or immunotherapy is not ideal. TXNDC9 belongs to thioredoxin domain-containing proteins, which is involved in tumor progression. However, no research associated with TXNDC9 has been reported in glioma. In this study, we found that TXNDC9 was upregulated in glioma. Knockdown of TXNDC9 would prevent proliferation and metastasis, induce the apoptosis rate of glioma cells, and promote the expression Cleaved-caspase3, Cleaved-caspase8, Cleaved-caspase9. Meanwhile, knockdown of TXNDC9 induced autophagy by increasing the level of LC3 and Beclin-1. Cell morphology and expression analysis of GFAP, Vimentin, verified that TXNDC9 could regulate glioma cell differentiation. During this program, the expression of p53 changes dramatically. The apoptosis, autophagy, and cell differentiation program were blocked by p53 inhibitor treatment. In conclusion, the silencing of TXNDC9 induces apoptosis and autophagy in glioma and promotes cell differentiation by controlling p53 and may function as a new mechanism in glioma.
View less >
View more >Glioma is the most common malignant brain tumor. Because of its high degree of malignancy, the effect of surgical treatment, radiotherapy, chemotherapy, or immunotherapy is not ideal. TXNDC9 belongs to thioredoxin domain-containing proteins, which is involved in tumor progression. However, no research associated with TXNDC9 has been reported in glioma. In this study, we found that TXNDC9 was upregulated in glioma. Knockdown of TXNDC9 would prevent proliferation and metastasis, induce the apoptosis rate of glioma cells, and promote the expression Cleaved-caspase3, Cleaved-caspase8, Cleaved-caspase9. Meanwhile, knockdown of TXNDC9 induced autophagy by increasing the level of LC3 and Beclin-1. Cell morphology and expression analysis of GFAP, Vimentin, verified that TXNDC9 could regulate glioma cell differentiation. During this program, the expression of p53 changes dramatically. The apoptosis, autophagy, and cell differentiation program were blocked by p53 inhibitor treatment. In conclusion, the silencing of TXNDC9 induces apoptosis and autophagy in glioma and promotes cell differentiation by controlling p53 and may function as a new mechanism in glioma.
View less >
Journal Title
Aging
Volume
12
Copyright Statement
© 2020 Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Subject
Biochemistry and Cell Biology
Physiology
Oncology and Carcinogenesis
TXNDC9
apoptosis
autophagy
differentiation
glioma