• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Privacy in Multiple On-line Social Networks - Re-identification and Predictability

    Thumbnail
    View/Open
    Estivill-Castro222169Published.pdf (616.3Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Nettleton, David F
    Estivill-Castro, Vladimir
    Salas, Julian
    Griffith University Author(s)
    Estivill-Castro, Vladimir
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    We consider the re-identification of users of on-line social networks when they participate in several different on-line social networks, potentially using several different accounts. The re-identification of users serves several purposes: (i) commercial use so as to avoid redundant mailing to the same user; (ii) enhancement of the information available about these users by unifying information from different sources; (iii) consolidation of accounts by on-line social network providers; (iv) identification of potentially malicious users and/or bots. We highlight that all this should occur within the bounds of the data protection ...
    View more >
    We consider the re-identification of users of on-line social networks when they participate in several different on-line social networks, potentially using several different accounts. The re-identification of users serves several purposes: (i) commercial use so as to avoid redundant mailing to the same user; (ii) enhancement of the information available about these users by unifying information from different sources; (iii) consolidation of accounts by on-line social network providers; (iv) identification of potentially malicious users and/or bots. We highlight that all this should occur within the bounds of the data protection and privacy laws as well as the users’ expectations on such matters to avoid backlash. In this paper, we explore this situation first by a formalization using the SAN model to conceptually structure information as a graph, which includes user and attribute type nodes. This formalization enables us to reason on two issues. First, how to identify that two or more user-accounts belong to the same user. Second, what gains in predictability are obtained after re-identification. For the first issue, we show that a set-difference approach is remarkably effective. For the second issue we explore the impact of re-identification on the predictability by two different machine learning algorithms: C4.5 (decision tree induction) and SVM-SMO (Support Vector Machine with SMO kernel). Our results show that as predictability improves, in some cases different SAN metrics emerge as predictors.
    View less >
    Journal Title
    Transactions on Data Privacy
    Volume
    12
    Issue
    1
    Publisher URI
    http://www.tdp.cat/issues16/abs.a302a18.php
    Copyright Statement
    © 2019 The Authors. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Information systems organisation and management
    Information systems
    Science & Technology
    Technology
    Computer Science, Theory & Methods
    Computer Science
    Data Privacy
    Publication URI
    http://hdl.handle.net/10072/397631
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander