• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Quantifying volume conducted potential using stimulation artefact in cortico-cortical evoked potentials

    Author(s)
    Prime, David
    Woolfe, Matthew
    O'Keefe, Steven
    Rowlands, David
    Dionisio, Sasha
    Griffith University Author(s)
    Dionisio, Sasha
    O'Keefe, Steven G.
    Rowlands, David D.
    Prime, Dave L.
    Woolfe, Matthew R.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Background: Cortico-cortical evoked potentials (CCEP) are a technique using low frequency stimulation to infer regions of cortical connectivity in patients undergoing Stereo-electroencephalographic (SEEG) monitoring for refractory epilepsy. Little attention has been given to volume conducted components of CCEP responses, and how they may inflate CCEP connectivity. New Method: Using data from 37 SEEG-CCEPs patients, a novel method was developed to quantify stimulation artefact by measuring the peak-to-peak voltage difference in the first 10 ms after CCEP stimulation. Early responses to CCEP stimulation were also quantified ...
    View more >
    Background: Cortico-cortical evoked potentials (CCEP) are a technique using low frequency stimulation to infer regions of cortical connectivity in patients undergoing Stereo-electroencephalographic (SEEG) monitoring for refractory epilepsy. Little attention has been given to volume conducted components of CCEP responses, and how they may inflate CCEP connectivity. New Method: Using data from 37 SEEG-CCEPs patients, a novel method was developed to quantify stimulation artefact by measuring the peak-to-peak voltage difference in the first 10 ms after CCEP stimulation. Early responses to CCEP stimulation were also quantified by calculating the root mean square of the 10−100 ms period after each stimulation pulse. Both the early CCEP responses and amplitude of stimulation artefact were regressed by physical distance, stimulation waveform, stimulation intensity and tissue type to identify conduction related properties. Results: Both stimulation artefact and early responses were correlated strongly with the inverse square of the distance from the stimulating electrode. Once corrected for the inverse square distance from the electrode, stimulation artefact and CCEP responses showed a linear relationship, indicating a volume conducted component. Comparison with existing methods: This is the first study to use stimulation artefact to quantify volume conducted potentials, and is the first to quantify volume conducted potentials in SEEG. A single prior study utilizing electrocorticography has shown that parts of early CCEP responses are due to volume conduction. Conclusions: The linear relationship between stimulation artefact amplitude and CCEP early responses, once corrected for distance, suggests that stimulation artefact can be used as a measure to quantify the volume conducted components.
    View less >
    Journal Title
    Journal of Neuroscience Methods
    Volume
    337
    DOI
    https://doi.org/10.1016/j.jneumeth.2020.108639
    Subject
    Neurosciences
    Psychology
    Cognitive Sciences
    Science & Technology
    Life Sciences & Biomedicine
    Biochemical Research Methods
    Biochemistry & Molecular Biology
    Publication URI
    http://hdl.handle.net/10072/397670
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander