• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development and application of species-specific cell-based bioassays to assess toxicity in green sea turtles

    Author(s)
    Finlayson, KA
    Madden Hof, CA
    van de Merwe, JP
    Griffith University Author(s)
    van de Merwe, Jason P.
    Finlayson, Kimberly A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Despite the detection of a wide range of contaminants in the blood of green turtle populations foraging in three locations of northern Queensland – Upstart Bay, Cleveland Bay and the Howick Group of Reefs, little is known about the effects of these contaminants on turtle health. Newly developed cell-based bioassays using green turtle primary cell cultures provide an ethical, reproducible, and high-throughput method for assessing the risk of chemical exposure sea turtles. In this project, the toxicity of six priority metals (Mn, Co, Mo, As, Sb, Cu) and blood extracts from foraging turtles were tested in two bioassays adapted ...
    View more >
    Despite the detection of a wide range of contaminants in the blood of green turtle populations foraging in three locations of northern Queensland – Upstart Bay, Cleveland Bay and the Howick Group of Reefs, little is known about the effects of these contaminants on turtle health. Newly developed cell-based bioassays using green turtle primary cell cultures provide an ethical, reproducible, and high-throughput method for assessing the risk of chemical exposure sea turtles. In this project, the toxicity of six priority metals (Mn, Co, Mo, As, Sb, Cu) and blood extracts from foraging turtles were tested in two bioassays adapted to green turtle primary skin and liver cells. Cytotoxicity of metals and blood extracts was measured in primary skin fibroblast cells using a resazurin assay. Glutathione-S-transferase (GST) activity was measured in primary skin fibroblasts and primary liver epithelial cells following exposure to metals and blood extracts. Arsenic, molybdenum, cobalt and copper were found to be cytotoxic to green turtle skin cells. Only manganese, cobalt and copper were found to alter GST activity, predominantly in skin cells, indicating a higher sensitivity of green turtle skin cells compared to liver cells. Effect concentrations of metals in both bioassays were above concentrations found in turtle blood. Turtle blood extracts from the three foraging grounds showed differences in cytotoxicity and GST activity. In both assays, blood extracts of turtles from Upstart Bay were the most toxic, followed by those from Cleveland Bay, then the Howick Reefs, suggesting turtles from Upstart Bay and Cleveland Bay may be at risk from current concentrations of organic contaminants. This study demonstrates that species-specific cell-based bioassays can be used effectively to assess chemical risk in sea turtles and their foraging grounds, and could be applied to assess chemical risk in other marine wildlife.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    747
    DOI
    https://doi.org/10.1016/j.scitotenv.2020.142095
    Subject
    Environmental Sciences
    Publication URI
    http://hdl.handle.net/10072/397787
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander