• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage

    Thumbnail
    View/Open
    Adekoya433635-Accepted.pdf (17.03Mb)
    Author(s)
    Xu, Rui
    Du, Lei
    Adekoya, David
    Zhang, Gaixia
    Zhang, Shanqing
    Sun, Shuhui
    Lei, Yong
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Electrochemical energy conversion and storage play crucial roles in meeting the increasing demand for renewable, portable, and affordable power supplies for society. The rapid development of nanostructured materials provides an alternative route by virtue of their unique and promising effects emerging at nanoscale. In addition to finding advanced materials, structure design and engineering of electrodes improves the electrochemical performance and the resultant commercial competitivity. Regarding the structural engineering, controlling the geometrical parameters (i.e., size, shape, hetero‐architecture, and spatial arrangement) ...
    View more >
    Electrochemical energy conversion and storage play crucial roles in meeting the increasing demand for renewable, portable, and affordable power supplies for society. The rapid development of nanostructured materials provides an alternative route by virtue of their unique and promising effects emerging at nanoscale. In addition to finding advanced materials, structure design and engineering of electrodes improves the electrochemical performance and the resultant commercial competitivity. Regarding the structural engineering, controlling the geometrical parameters (i.e., size, shape, hetero‐architecture, and spatial arrangement) of nanostructures and thus forming well‐defined nanostructure (WDN) electrodes have been the central aspects of investigations and practical applications. This review discusses the fundamental aspects and concept of WDNs for energy conversion and storage, with a strong emphasis on illuminating the relationship between the structural characteristics and the resultant electrochemical superiorities. Key strategies for actualizing well‐defined features in nanostructures are summarized. Electrocatalysis and photoelectrocatalysis (for energy conversion) as well as metal‐ion batteries and supercapacitors (for energy storage) are selected to illustrate the superiorities of WDNs in electrochemical reactions and charge carrier transportation. Finally, conclusions and perspectives regarding future research, development, and applications of WDNs are discussed.
    View less >
    Journal Title
    Advanced Energy Materials
    DOI
    https://doi.org/10.1002/aenm.202001537
    Copyright Statement
    © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Macromolecular and materials chemistry
    Materials engineering
    Other engineering
    Science & Technology
    Physical Sciences
    Technology
    Chemistry, Physical
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/397810
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander