• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An Operational Split-Window Algorithm for Retrieving Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data

    Thumbnail
    View/Open
    Hu443513-Published.pdf (5.831Mb)
    Author(s)
    Li, Ruibo
    Li, Hua
    Sun, Lin
    Yang, Yikun
    Hu, Tian
    Bian, Zunjian
    Cao, Biao
    Du, Yongming
    Liu, Qinhuo
    Griffith University Author(s)
    Hu, Tian
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    An operational split-window (SW) algorithm was developed to retrieve high-temporal-resolution land surface temperature (LST) from global geostationary (GEO) satellite data. First, the MODTRAN 5.2 and SeeBor V5.0 atmospheric profiles were used to establish a simulation database to derive the SW algorithm coefficients for GEO satellites. Then, the dynamic land surface emissivities (LSEs) in the two SW bands were estimated using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED), fractional vegetation cover (FVC), and snow cover products. Here, the proposed SW algorithm ...
    View more >
    An operational split-window (SW) algorithm was developed to retrieve high-temporal-resolution land surface temperature (LST) from global geostationary (GEO) satellite data. First, the MODTRAN 5.2 and SeeBor V5.0 atmospheric profiles were used to establish a simulation database to derive the SW algorithm coefficients for GEO satellites. Then, the dynamic land surface emissivities (LSEs) in the two SW bands were estimated using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED), fractional vegetation cover (FVC), and snow cover products. Here, the proposed SW algorithm was applied to Himawari-8 Advanced Himawari Imager (AHI) observations. LST estimates were retrieved in January, April, July, and October 2016, and three validation methods were used to evaluate the LST retrievals, including the temperature-based (T-based) method, radiance-based (R-based) method, and intercomparison method. The in situ night-time observations from two Heihe Watershed Allied Telemetry Experimental Research (HiWATER) sites and four Terrestrial Ecosystem Research Network (TERN) OzFlux sites were used in the T-based validation, where a mean bias of −0.70 K and a mean root-mean-square error (RMSE) of 2.29 K were achieved. In the R-based validation, the biases were 0.14 and −0.13 K and RMSEs were 0.83 and 0.86 K for the daytime and nighttime, respectively, over four forest sites, four desert sites, and two inland water sites. Additionally, the AHI LST estimates were compared with the Collection 6 MYD11_L2 and MYD21_L2 LST products over southeastern China and the Australian continent, and the results indicated that the AHI LST was more consistent with the MYD21 LST and was generally higher than the MYD11 LST. The pronounced discrepancy between the AHI and MYD11 LST could be mainly caused by the differences in the emissivities used. We conclude that the developed SW algorithm is of high accuracy and shows promise in producing LST data with global coverage using observations from a constellation of GEO satellites.
    View less >
    Journal Title
    Remote Sensing
    Volume
    12
    Issue
    16
    DOI
    https://doi.org/10.3390/rs12162613
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Classical Physics
    Physical Geography and Environmental Geoscience
    Geomatic Engineering
    Science & Technology
    Remote Sensing
    Himawari-8 AHI
    operational split-window algorithm
    Publication URI
    http://hdl.handle.net/10072/397825
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander